Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (1) : 30-36    https://doi.org/10.1007/s12200-018-0762-8
REVIEW ARTICLE
Dipole-fiber system: from single photon source to metadevices
Shaghik ATAKARAMIANS1(), Tanya M. MONRO2,3, Shahraam AFSHAR V.2,3
1. School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW 2052, Australia
2. Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide SA 5005, Australia
3. Laser Physics and Photonic Devices Laboratories, School of Engineering, University of South Australia, Mawson Lakes SA 5095, Australia
 Download: PDF(308 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices.

Keywords dipole source      optical fibers      single photon source      whispering gallery modes      electric and magnetic response     
Corresponding Author(s): Shaghik ATAKARAMIANS   
Online First Date: 28 March 2018    Issue Date: 02 April 2018
 Cite this article:   
Shaghik ATAKARAMIANS,Tanya M. MONRO,Shahraam AFSHAR V.. Dipole-fiber system: from single photon source to metadevices[J]. Front. Optoelectron., 2018, 11(1): 30-36.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0762-8
https://academic.hep.com.cn/foe/EN/Y2018/V11/I1/30
Fig.1  (a) Diamond optical fiber excited at the endface using 700 nm laser. (b) Background corrected measured second order autocorrelation function (blue circles) of a single NV-center embedded in the tellurite optical fiber. The solid red line represents a single exponential fit of the photon statistics Both parts adapted from Ref. [19]
Fig.2  Power captured into the guided modes vs. core diameter for a tellurite core and air clad fiber excited by an electric dipole emitting at 700 nm in the core center (red) and on the cladding (blue) interface. (a) Radially, (b) azimuthally, and (c) longitudinally oriented dipole. Power is normalized to the total power emitted in a bulk diamond material. All adapted from Ref. [18]
Fig.3  Normalized radiated power (total, TE and TM) of a coupled system when excitation is oriented (a) radially, (b) azimuthally, and (c) longitudinally. Power is normalized to the total power emitted in a bulk tellurite glass. The position of the resonances of 2D TE- and TM-WGMs is shown respectively with blue and red triangles. The insets represent the normalized magnetic field ((a) and (b)) and electric field ((c)) of (8,0) WGM for each case, which is the peak just before 1.2 mm in each case. Adapted from Ref. [22]
Fig.4  First two-three peaks of normalized radiated power (total in black, TE in blue and TM in red) of a coupled system when excitation is oriented (a) radially, (b) azimuthally, and (c) longitudinally. Power is normalized to the total power emitted in a bulk tellurite glass. The insets represent relative contribution of multipole coefficients ( l,m) in the total energy of the system. Adapted from Ref. [22]
1 Vahala K JOptical microcavities. Nature, 2003, 424(6950): 839–846
https://doi.org/10.1038/nature01939 pmid: 12917698
2 Afshar V S, Henderson M R, Greentree A D, Gibson B C, Monro T MSelf-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22(9): 11301–11311
https://doi.org/10.1364/OE.22.011301 pmid: 24921827
3 Hall J M M, Reynolds T, Henderson M R, Riesen N, Monro T M, Afshar S.Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25(6): 6192–6214
https://doi.org/10.1364/OE.25.006192 pmid: 28380973
4 Chew H, McNulty P J, Kerker M. Model for Raman and fluorescent scattering by molecules embedded in small particles. Physical Review A, 1976, 13(1): 396–404
https://doi.org/10.1103/PhysRevA.13.396
5 Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics Letters, 2003, 28(4): 272–274
https://doi.org/10.1364/OL.28.000272 pmid: 12653369
6 Quan H, Guo Z. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1-3): 231–243
https://doi.org/10.1016/j.jqsrt.2004.08.023
7 Guo Z, Quan H, Pau S. Near-field gap effects on small microcavity whispering-gallery mode resonators. Journal of Physics D, Applied Physics, 2006, 39(24): 5133–5136
https://doi.org/10.1088/0022-3727/39/24/006
8 Imakita K, Shibata H, Fujii M, Hayashi S. Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal. Optics Express, 2013, 21(9): 10651–10658
https://doi.org/10.1364/OE.21.010651 pmid: 23669921
9 Li M, Wu X, Liu L, Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 2013, 21(14): 16908–16913
https://doi.org/10.1364/OE.21.016908 pmid: 23938539
10 Farnesi D, Barucci A, Righini G C, Conti G N, Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40(19): 4508–4511
https://doi.org/10.1364/OL.40.004508 pmid: 26421568
11 Ruan Z, Fan S. Superscattering of light from subwavelength nanostructures. Physical Review Letters, 2010, 105(1): 013901
https://doi.org/10.1103/PhysRevLett.105.013901 pmid: 20867445
12 Agio M. Optical antennas as nanoscale resonators. Nanoscale, 2012, 4(3): 692–706
https://doi.org/10.1039/C1NR11116G pmid: 22175063
13 Novotny L, van Hulst N. Antennas for light. Nature Photonics, 2011, 5(2): 83–90
https://doi.org/10.1038/nphoton.2010.237
14 Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
https://doi.org/10.1364/AOP.1.000438
15 Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Optics and Photonics News, 2017, 28(1): 24–31
https://doi.org/10.1364/OPN.28.1.000024
16 Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917–924
https://doi.org/10.1038/nmat3431 pmid: 23089997
17 Snyder A W, Love J. Optical Waveguide Theory. 1st ed. London: Chapman and Hall Ltd, 1983
18 Henderson M R, Afshar V. S, Greentree A D, Monro T M. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19(17): 16182–16194
https://doi.org/10.1364/OE.19.016182 pmid: 21934981
19 Henderson M R, Gibson B C, Ebendorff-Heidepriem H, Kuan K, Afshar V S, Orwa J O, Aharonovich I, Tomljenovic-Hanic S, Greentree A D, Prawer S, Monro T M. Diamond in tellurite glass: a new medium for quantum information. Advanced Materials, 2011, 23(25): 2806–2810
https://doi.org/10.1002/adma.201100151 pmid: 21506173
20 Ebendorff-Heidepriem H, Ruan Y, Ji H, Greentree A D, Gibson B C, Monro T M. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4(12): 2608–2620
https://doi.org/10.1364/OME.4.002608
21 Ruan Y, Ji H, Johnson B C, Ohshima T, Greentree A D, Gibson B C, Monro T M, Ebendorff-Heidepriem H. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5(1): 73–87
https://doi.org/10.1364/OME.5.000073
22 Atakaramians S, Miroshnichenko A E, Shadrivov I V, Mirzaei A, Monro T M. Kivshar Y S, Afshar V S. Strong magnetic response of optical nanofibers. ACS Photonics, 2016, 3(6): 972–978
https://doi.org/10.1021/acsphotonics.6b00030
23 Atakaramians S, Miroshnichenko A E, Shadrivov I V, Monro T M. Kivshar Y S, Afshar V. S. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. In: Proceedings of SPIE 9668, Micro+Nano Materials, Devices, and Systems, 2015, 96683J
https://doi.org/10.1117/12.2204783
24 Fussell D P, McPhedran R C, Martijn de Sterke C. Decay rate and level shift in a circular dielectric waveguide. Physical Review A, 2005, 71(1): 013815
https://doi.org/10.1103/PhysRevA.71.013815
25 Jackson J. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc., 1998
26 Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New Journal of Physics, 2012, 14(9): 093033
https://doi.org/10.1088/1367-2630/14/9/093033
[1] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[2] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[3] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed