Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (4) : 397-404    https://doi.org/10.1007/s12200-019-0866-9
RESEARCH ARTICLE
Airy-like field under high numerical aperture optical system
Yong LIU1,2, Zhifeng ZHANG2,3, Cuifang KUANG2,4()
1. College of Electronics and Information Engineering, Shanghai University of Electrical Power, Shanghai 200090, China
2. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 Download: PDF(3486 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The tightly focused field of an incident light beam through cubic phase modulation has been investigated by vectorial diffraction theory. For different modulation index of cubic phase and polarization states of the incident light, the focused fields have been presented. The results show that the Airy-like field can be produced by cubic phase modulation under high numerical aperture (NA) optical system. Intensity pattern and length of the main lobe are depended on modulation index for the spatial uniform polarization, and the Airy-like field is affected by polarization state for the spatial nonuniform polarization. It is helpful to structure new optical fields in optical manipulation, optical imaging, and surface plasma controlling.

Keywords diffraction      cubic phase      optical field      Airy beam     
Corresponding Author(s): Cuifang KUANG   
Online First Date: 08 May 2019    Issue Date: 30 December 2019
 Cite this article:   
Yong LIU,Zhifeng ZHANG,Cuifang KUANG. Airy-like field under high numerical aperture optical system[J]. Front. Optoelectron., 2019, 12(4): 397-404.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0866-9
https://academic.hep.com.cn/foe/EN/Y2019/V12/I4/397
Fig.1  Cubic phase masks with different modulation indexes. (a) a = 0.002; (b) a = 0.01; (c) a = 0.08
Fig.2  Normalized optical fields modulated without and with cubic phase. When a = 0, the longitudinal optical field through the focus is (a), the transverse optical fields are at (b) z = 0 and (c) z = 0.5l. When a = 0.01, the longitudinal optical field through the focus is (d), the transverse optical fields are at (e) z = 0, (f) z = l, (g) z = 4.7l, and (h) z = 6.8l. Here, (i) is corresponding to the area shown by the dashed box in (d)
Fig.3  Normalized optical fields modulated by different cubic phase. The longitudinal optical fields through the focus are (a)−(d) and the transverse optical fields in the focal plane are (e)−(h), for the case of a = 0.002, 0.008, 0.02, and 0.06, respectively
Fig.4  Normalized optical fields obtained by different polarized lights. The three-dimensional optical fields are (a)−(d) for x-axis linear polarization, circular polarization, azimuthal polarization and radial polarization, respectively. Here, the longitudinal optical fields through the focus are (a)-l–(d)-l, and the transverse optical fields at z = 0, l and 2l are (a)-t1–(d)-t3
Fig.5  Electric field parts in the transverse plane at z = 1.5l for (a) and (b) azimuthally and (c)−(e) radially polarized light
1 M V Berry, N L Balazs. Nonspreading wave packets. American Journal of Physics, 1979, 47(3): 264–267
https://doi.org/10.1119/1.11855
2 G A Siviloglou, J Broky, A Dogariu, D N Christodoulides. Observation of accelerating Airy beams. Physical Review Letters, 2007, 99(21): 213901
https://doi.org/10.1103/PhysRevLett.99.213901 pmid: 18233219
3 S Jia, J C Vaughan, X Zhuang. Isotropic three-dimensional super-resolution imaging with a self- bending point spread function. Nature Photonics, 2014, 8(4): 302–306
https://doi.org/10.1038/nphoton.2014.13 pmid: 25383090
4 T Vettenburg, H I C Dalgarno, J Nylk, C Coll-Lladó, D E K Ferrier, T Čižmár, F J Gunn-Moore, K Dholakia. Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11(5): 541–544
https://doi.org/10.1038/nmeth.2922 pmid: 24705473
5 A Chong, W H Renninger, D N Christodoulides, F W Wise. Airy-Bessel wave packets as versatile linear light bullets. Nature Photonics, 2010, 4(2): 103–106
https://doi.org/10.1038/nphoton.2009.264
6 D Abdollahpour, S Suntsov, D G Papazoglou, S Tzortzakis. Spatiotemporal airy light bullets in the linear and nonlinear regimes. Physical Review Letters, 2010, 105(25): 253901
https://doi.org/10.1103/PhysRevLett.105.253901 pmid: 21231591
7 J Baumgartl, M Mazilu, K Dholakia. Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2(11): 675–678
https://doi.org/10.1038/nphoton.2008.201
8 P Zhang, J Prakash, Z Zhang, M S Mills, N K Efremidis, D N Christodoulides, Z Chen. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36(15): 2883–2885
https://doi.org/10.1364/OL.36.002883 pmid: 21808346
9 W Liu, D N Neshev, I V Shadrivov, A E Miroshnichenko, Y S Kivshar. Plasmonic Airy beam manipulation in linear optical potentials. Optics Letters, 2011, 36(7): 1164–1166
https://doi.org/10.1364/OL.36.001164 pmid: 21479017
10 A Belafhal, L Ez-Zariy, S Hennani, H Nebdi. Theoretical introduction and generation method of a novel nondiffracting waves: Olver beams. Optics and Photonics Journal, 2015, 5(7): 234–246
https://doi.org/10.4236/opj.2015.57023
11 S N Khonina, A V Ustinov. Fractional Airy beams. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2017, 34(11): 1991–1999
https://doi.org/10.1364/JOSAA.34.001991 pmid: 29091649
12 N K Efremidis, D N Christodoulides. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047
https://doi.org/10.1364/OL.35.004045 pmid: 21124607
13 S N Khonina, A P Porfirev, A V Ustinov. Sudden autofocusing of superlinear chirp beams. Journal of Optics, 2018, 20(2): 025605
https://doi.org/10.1088/2040-8986/aaa075
14 G A Siviloglou, D N Christodoulides. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981
https://doi.org/10.1364/OL.32.000979 pmid: 17375174
15 T Ellenbogen, N Voloch-Bloch, A Ganany-Padowicz, A Arie.Nonlinear generation and manipulation of Airy beams. Nature Photonics, 2009, 3(7): 395–398
https://doi.org/10.1038/nphoton.2009.95
16 I Dolev, T Ellenbogen, N Voloch-Bloch, A Arie. Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals. Applied Physics Letters, 2009, 95(20): 201112
https://doi.org/10.1063/1.3266066
17 H T Dai, X W Sun, D Luo, Y J Liu. Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals. Optics Express, 2009, 17(22): 19365–19370
https://doi.org/10.1364/OE.17.019365 pmid: 19997157
18 D Luo, H T Dai, X W Sun, H V Demir. Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode. Optics Communications, 2010, 283(20): 3846–3849
https://doi.org/10.1016/j.optcom.2010.05.056
19 M Gecevicius, M Beresna, P G Kazansky. Accelerating Airy beams generated by ultrafast laser induced space- variant nanostructures in glass. In: Proceedings of 2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA: IEEE, 2012
20 R Cao, Y Yang, J G Wang, J Bu, M W Wang, X C Yuan. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency. Applied Physics Letters, 2011, 99(26): 261106
https://doi.org/10.1063/1.3672210
21 D M Cottrell, J A Davis, T M Hazard. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Optics Letters, 2009, 34(17): 2634–2636
https://doi.org/10.1364/OL.34.002634 pmid: 19724515
22 L Froehly, F Courvoisier, A Mathis, M Jacquot, L Furfaro, R Giust, P A Lacourt, J M Dudley. Arbitrary accelerating micron-scale caustic beams in two and three dimensions. Optics Express, 2011, 19(17): 16455–16465
https://doi.org/10.1364/OE.19.016455 pmid: 21935010
23 B K Singh, R Remez, Y Tsur, A Arie. Super-Airy beam: self-accelerating beam with intensified main lobe. Optics Letters, 2015, 40(20): 4703–4706
https://doi.org/10.1364/OL.40.004703 pmid: 26469599
24 A Torre. Airy beams beyond the paraxial approximation. Optics Communications, 2010, 283(21): 4146–4165
https://doi.org/10.1016/j.optcom.2010.06.046
25 L Carretero, P Acebal, S Blaya, C García, A Fimia, R Madrigal, A Murciano. Nonparaxial diffraction analysis of Airy and SAiry beams. Optics Express, 2009, 17(25): 22432–22441
https://doi.org/10.1364/OE.17.022432 pmid: 20052167
26 J Bar-David, N Voloch-Bloch, N Mazurski, U Levy. Unveiling the propagation dynamics of self-accelerating vector beams. Scientific Reports, 2016, 6(1): 34272
https://doi.org/10.1038/srep34272 pmid: 27671745
27 X Weng, Q Song, X Li, X Gao, H Guo, J Qu, S Zhuang. Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen. Nature Communications, 2018, 9(1): 5035
https://doi.org/10.1038/s41467-018-07282-y pmid: 30487516
28 N Cohen, S Yang, A Andalman, M Broxton, L Grosenick, K Deisseroth, M Horowitz, M Levoy. Enhancing the performance of the light field microscope using wavefront coding. Optics Express, 2014, 22(20): 24817–24839
https://doi.org/10.1364/OE.22.024817 pmid: 25322056
29 S V King, A Doblas, N Patwary, G Saavedra, M Martínez-Corral, C Preza. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy. Applied Optics, 2015, 54(29): 8587–8595
https://doi.org/10.1364/AO.54.008587 pmid: 26479791
30 B Richards, E Wolf. Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1959, 253(1274): 358–379
31 X Hao, C F Kuang, T T Wang, X Liu. Effects of polarization on the de-excitation dark focal spot in STED microscopy. Journal of Optics, 2010, 12(11): 115707
https://doi.org/10.1088/2040-8978/12/11/115707
[1] Huangjia LI, Boqin MA. Research development on fabrication and optical properties of nonlinear photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 35-49.
[2] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[3] Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
[4] Hequn WANG,Jing PEI,Longfa PAN. Optimized multi-dimensional optical storage reading strategy[J]. Front. Optoelectron., 2014, 7(4): 467-474.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed