|
|
Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells |
Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG( ), Hongwei HAN |
Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Screen printing technique has been widely applied for the manufacturing of both traditional silicon solar cells and emerging photovoltaics such as dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). Particularly, we have developed a printable mesoscopic PSC based on a triple layer scaffold of TiO2/ZrO2/carbon. The deposition of the scaffold is entirely based on screen printing process, which provides a promising prospect for low-cost photovoltaics. However, the optimal thickness of the TiO2 layer for fabricating efficient printable PSCs is much smaller than the typical thickness of screen printed films. Here, we tune the concentration of the pastes and the printing parameters for coating TiO2 films, and successfully print TiO2 films with the thickness of 500−550 nm. The correlation between the thickness of the films and printing parameters such as the solid content and viscosity of the pastes, the printing speed and pressure, and the temperature has been investigated. Besides, the edge effect that the edge of the TiO2 films possesses a much larger thickness and printing positional accuracy have been studied. This work will significantly benefit the further development of printable mesoscopic PSCs.
|
Keywords
screen printing
perovskite solar cells (PSCs)
thickness
parameter control
|
Corresponding Author(s):
Yaoguang RONG
|
Just Accepted Date: 07 March 2019
Online First Date: 29 April 2019
Issue Date: 30 December 2019
|
|
1 |
Y Rong, Y Ming, W Ji, D Li, A Mei, Y Hu, H Han. Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. Journal of Physical Chemistry Letters, 2018, 9(10): 2707–2713
https://doi.org/10.1021/acs.jpclett.8b00912
pmid: 29738259
|
2 |
M R Somalu, A Muchtar, W R W Daud, N P Brandon. Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable & Sustainable Energy Reviews, 2017, 75: 426–439
https://doi.org/10.1016/j.rser.2016.11.008
|
3 |
F Miller L. Paste Transfer in the Screening Process. SAE Technical Paper Series, 1968, 680796
|
4 |
Towards a better understanding of screen print thickness control: R. J. Horwood. Electrocomponent Science and Technology. 1, 129 (1974). Microelectronics Reliability, 1975, 14(3): 284
|
5 |
M Späth, P M Sommeling, J A M van Roosmalen, H J P Smit, N P G van der Burg, D R Mahieu, N J Bakker, J M Kroon. Reproducible manufacturing of dye-sensitized solar cells on a semi-automated baseline. Progress in Photovoltaics: Research and Applications, 2003, 11(3): 207–220
https://doi.org/10.1002/pip.481
|
6 |
S R Wenham, M A Green. Silicon solar cells. Progress in Photovoltaics: Research and Applications, 1996, 4(1): 3–33
https://doi.org/10.1002/(SICI)1099-159X(199601/02)4:1<3::AID-PIP117>3.0.CO;2-S
|
7 |
S Ito, T N Murakami, P Comte, P Liska, C Grätzel, M K Nazeeruddin, M Grätzel. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 2008, 516(14): 4613–4619
https://doi.org/10.1016/j.tsf.2007.05.090
|
8 |
B, O'Regan M. Grätzel A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737–740
|
9 |
A Hagfeldt, G Boschloo, L Sun, L Kloo, H Pettersson. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
https://doi.org/10.1021/cr900356p
pmid: 20831177
|
10 |
A Hinsch, H Brandt, W Veurman, S Hemming, M Nittel, U Würfel, P Putyra, C Lang-Koetz, M Stabe, S Beucker. Dye solar modules for facade applications: recent results from project ColorSol. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 820–824
https://doi.org/10.1016/j.solmat.2008.09.049
|
11 |
A Hinsch, W Veurman, H Brandt, R Loayza Aguirre, K Bialecka, K Flarup Jensen. Worldwide first fully up-scaled fabrication of 60 × 100 cm2 dye solar module prototypes. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 698–710
https://doi.org/10.1002/pip.1213
|
12 |
H Pettersson, T Gruszecki, C Schnetz, M Streit, Y Xu, L Sun, M Gorlov, L Kloo, G Boschloo, L Häggman, A Hagfeldt. Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics: Research and Applications, 2010, 18(5): 340–345
https://doi.org/10.1002/pip.971
|
13 |
Y, Rong G, Liu H, Wang X, Li H. Han Monolithic all-solid-state dye-sensitized solar cells. Frontiers of Optoelectronics, 2013, 6(4): 359–372
https://doi.org/10.1007/s12200-013-0346-6
|
14 |
N Kato, Y Takeda, K Higuchi, A Takeichi, E Sudo, H Tanaka, T Motohiro, T Sano, T Toyoda. Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 893–897
https://doi.org/10.1016/j.solmat.2008.10.022
|
15 |
S Dai, J Weng, Y Sui, S Chen, S Xiao, Y Huang, F Kong, X Pan, L Hu, C Zhang, K Wang. The design and outdoor application of dye-sensitized solar cells. Inorganica Chimica Acta, 2008, 361(3): 786–791
https://doi.org/10.1016/j.ica.2007.04.018
|
16 |
Y Takeda, N Kato, K Higuchi, A Takeichi, T Motohiro, S Fukumoto, T Sano, T Toyoda. Monolithically series-interconnected transparent modules of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93(6–7): 808–811
https://doi.org/10.1016/j.solmat.2008.09.054
|
17 |
A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r
pmid: 19366264
|
18 |
H S Kim, C R Lee, J H Im, K B Lee, T Moehl, A Marchioro, S J Moon, R Humphry-Baker, J H Yum, J E Moser, M Grätzel, N G Park. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(1): 591
https://doi.org/10.1038/srep00591
pmid: 22912919
|
19 |
W S Yang, B W Park, E H Jung, N J Jeon, Y C Kim, D U Lee, S S Shin, J Seo, E K Kim, J H Noh, S I Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
https://doi.org/10.1126/science.aan2301
pmid: 28663498
|
20 |
D Bi, C Yi, J Luo, J D Décoppet, F Zhang, S M Zakeeruddin, X Li, A Hagfeldt, M Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142
https://doi.org/10.1038/nenergy.2016.142
|
21 |
Y, Rong Y, Hu A, Mei H, Tan M I, Saidaminov S I, Seok M D, McGehee E H, Sargent H. Han Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaata8235
https://doi.org/10.1126/science.aat8235
|
22 |
M A Green, Y Hishikawa, E D Dunlop, D H Levi, J Hohl-Ebinger, M Yoshita, A W Y Ho-Baillie. Solar cell efficiency tables (Version 53). Progress in Photovoltaics: Research and Applications, 2019, 27(1): 3–12
https://doi.org/10.1002/pip.3102
|
23 |
Y Rong, L Liu, A Mei, X Li, H Han. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Advanced Energy Materials, 2015, 5(20): 1501066
https://doi.org/10.1002/aenm.201501066
|
24 |
Y, Hu S, Si A, Mei Y, Rong H, Liu X, Li H. Han Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Solar RRL, 2017, 1(2): 1600019
https://doi.org/10.1002/solr.201600019
|
25 |
Y Rong, X Hou, Y Hu, A Mei, L Liu, P Wang, H Han. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8: 14555
https://doi.org/10.1038/ncomms14555
pmid: 28240286
|
26 |
G Yin, J Ma, H Jiang, J Li, D Yang, F Gao, J Zeng, Z Liu, S F Liu. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Applied Materials & Interfaces, 2017, 9(16): 14545
https://doi.org/10.1021/acsami.7b04738
pmid: 28414211
|
27 |
Y Jiang, M R Leyden, L Qiu, S Wang, L K Ono, Z Wu, E J Juarez-Perez, Y Qi. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Advanced Functional Materials, 2018, 28(1): 1703835
https://doi.org/10.1002/adfm.201703835
|
28 |
D Yang, R Yang, J Zhang, Z Yang, S Liu, C Li. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy & Environmental Science, 2015, 8(11): 3208–3214
https://doi.org/10.1039/C5EE02155C
|
29 |
K Wang, W Zhao, J Liu, J Niu, Y Liu, X Ren, J Feng, Z Liu, J Sun, D Wang, S F Liu. CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells. ACS Applied Materials & Interfaces, 2017, 9(39): 33989–33996
https://doi.org/10.1021/acsami.7b11329
pmid: 28914052
|
30 |
T Liu, K Chen, Q Hu, R Zhu, Q Gong. Inverted perovskite solar cells: progresses and perspectives. Advanced Energy Materials, 2016, 6(17): 1600457
https://doi.org/10.1002/aenm.201600457
|
31 |
D Luo, W Yang, Z Wang, A Sadhanala, Q Hu, R Su, R Shivanna, G F Trindade, J F Watts, Z Xu, T Liu, K Chen, F Ye, P Wu, L Zhao, J Wu, Y Tu, Y Zhang, X Yang, W Zhang, R H Friend, Q Gong, H J Snaith, R Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446
https://doi.org/10.1126/science.aap9282
pmid: 29954975
|
32 |
Z Ku, Y Rong, M Xu, T Liu, H Han. Full printable processed mesoscopic CH₃NH₃PbI₃/TiO₂ heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132
https://doi.org/10.1038/srep03132
pmid: 24185501
|
33 |
F De Rossi, J A Baker, D Beynon, K E A Hooper, S M P Meroni, D Williams, Z Wei, A Yasin, C Charbonneau, E H Jewell, T M Watson. All printable perovskite solar modules with 198 cm2 active area and over 6% efficiency. Advanced Materials Technologies, 2018, 3(11): 1800156
https://doi.org/10.1002/admt.201800156
|
34 |
A K Baranwal, S Kanaya, T A N Peiris, G Mizuta, T Nishina, H Kanda, T Miyasaka, H Segawa, S Ito. 100°C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. ChemSusChem, 2016, 9(18): 2604–2608
https://doi.org/10.1002/cssc.201600933
pmid: 27629068
|
35 |
G Grancini, C Roldán-Carmona, I Zimmermann, E Mosconi, X Lee, D Martineau, S Narbey, F Oswald, F De Angelis, M Graetzel, M K Nazeeruddin. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684
https://doi.org/10.1038/ncomms15684
pmid: 28569749
|
36 |
C Y Chan, Y Wang, G W Wu, E Wei-Guang Diau. Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(10): 3872–3878
https://doi.org/10.1039/C6TA00912C
|
37 |
T Liu, L Liu, M Hu, Y Yang, L Zhang, A Mei, H Han. Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. Journal of Power Sources, 2015, 293: 533–538
https://doi.org/10.1016/j.jpowsour.2015.05.106
|
38 |
R D Deegan, O Bakajin, T F Dupont, G Huber, S R Nagel, T A Witten. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829
https://doi.org/10.1038/39827
|
39 |
H W Lin, C P Chang, W H Hwu, M D Ger. The rheological behaviors of screen-printing pastes. Journal of Materials Processing Technology, 2008, 197(1–3): 284–291
https://doi.org/10.1016/j.jmatprotec.2007.06.067
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|