Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 426-437    https://doi.org/10.1007/s12200-020-1010-6
RESEARCH ARTICLE
Optical generation of UWB pulses utilizing Fano resonance modulation
Zhe XU, Yanyang ZHOU, Shuhuang CHEN, Liangjun LU, Gangqiang ZHOU, Jianping CHEN, Linjie ZHOU()
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(2479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we reported an integrated method to generate ultra-wideband (UWB) pulses of different orders based on a reconfigurable silicon micro-ring resonator-coupled Mach–Zehnder interferometer. Under proper operating conditions, the device can produce Fano resonances with a peak-to-valley extinction ratio of above 20 dB. UWB monocycle and doublet signals with picosecond pulse widths are produced when the micro-ring resonator is modulated by square and Gaussian electrical pulses, respectively. With our Fano resonance modulator on silicon photonics, it is promising to foresee versatile on-chip microwave signal generation.

Keywords ultra-wideband (UWB) generation      Fano resonance      intensity modulation      integrated silicon modulator     
Corresponding Author(s): Linjie ZHOU   
Just Accepted Date: 10 July 2020   Online First Date: 11 August 2020    Issue Date: 06 December 2021
 Cite this article:   
Zhe XU,Yanyang ZHOU,Shuhuang CHEN, et al. Optical generation of UWB pulses utilizing Fano resonance modulation[J]. Front. Optoelectron., 2021, 14(4): 426-437.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1010-6
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/426
Fig.1  (a) Schematic structure of the micro-ring resonator-coupled Mach–Zehnder interferometer. Insets: structures of the phase shifter and the PN junction. (b) Microscope image of the fabricated device
Fig.2  Working principle illustration for generation of (a) and (b) UWB monocycle pulses in two polarities, (c) and (d) UWB doublet pulses in two polarities
Fig.3  Measured transmission spectrum of the RC-MZI in one Fano resonance evolution cycle. The insets illustrate the magnified resonance spectra at different wavelengths. The modeled spectra are also shown
Fig.4  Resonance spectra at four voltages (Vps) on the phase shifter
Fig.5  (a) Fano resonance spectral shifts with different voltages (Vd) applied to the PN junction. (b) Extracted waveguide effective refractive index variation as a function of voltage on the PN junction
Fig.6  Experimental setup for UWB signal generation and characterization. PC: polarization controller, EDFA: erbium-doped fiber amplifier, PD: photodetector, AMP: RF amplifier, AWG: arbitrary waveform generator, ESA: electrical spectrum analyzer
Fig.7  Generation of UWB monocycle pulses. (a) Monocycle pulses at the Fano resonance wavelength of 1548.93 nm and (b) its electrical spectrum. (c) Monocycle pulses at the Fano resonance wavelength of 1553.74 nm and (d) its electrical spectrum
Fig.8  Generation of UWB doublet pulses. (a) Doublet pulses at the Fano resonance wavelength of 1548.93 nm and (b) its electrical spectrum. (c) Doublet pulses at the Fano resonance wavelength of 1553.74 nm with the opposite polarity and (d) its electrical spectrum
Fig.9  Generation of high-order UWB pulses using a square-wave driving signal. (a) and (b) UWB doublet pulses and the electrical spectrum. (c) and (d) UWB triplet pulses and the electrical spectrum. (e) and (f) UWB quadruplet pulses and the electrical spectrum
electrical driving signal 200-MHz square wave 200-MHz Gaussian wave 100-MHz square wave
UWB signal UWB monocycle UWB monocycle UWB doublet UWB doublet UWB doublet UWB
triplet
UWB quadruplet
optical wavelength/nm 1548.93 1553.74 1548.93 1553.74 1548.93 1548.93 1548.93
central frequency/GHz 1.2 0.8 0.8 1.2 1 1.1 1.3
10-dB bandwidth/GHz 2.2 1.4 3 1.4 1.2 0.8 1
fractional bandwidth/% 183 175 375 117 120 72.7 76.9
Tab.1  Extracted key performance specifications of the generated UWB pulses
1 D Marpaung, J Yao, J Capmany. Integrated microwave photonics. Nature Photonics, 2019, 13(2): 80–90
https://doi.org/10.1038/s41566-018-0310-5
2 W Zhang, J Yao. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52(1): 1–12
https://doi.org/10.1109/JQE.2015.2501639
3 J Yao, F Zeng, Q Wang. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
4 L Zhou, Q Sun, L Lu, J Chen. Programmable universal microwave-photonic filter based on cascaded dual-ring assisted MZIs. In: Proceedings of Smart Photonic and Optoelectronic Integrated Circuits XX. San Francisco: SPIE, 2018, 105361G
5 R Yang, L Zhou, M Wang, H Zhu, J Chen. Application of SOI microring coupling modulation in microwave photonic phase shifters. Frontiers of Optoelectronics, 2016, 9(3): 483–488
https://doi.org/10.1007/s12200-016-0559-6
6 Y Zhong, L Zhou, Y, Zhou Y, Xia S Liu, L Lu, J Chen, X Wang. Microwave frequency upconversion employing a coupling-modulated ring resonator. Photonics Research, 2017, 5(6): 689–694
7 L Zhuang, C G H Roeloffzen, A Meijerink, M Burla, W C V Etten. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. Journal of Lightwave Technology, 2010, 28(1): 19–31
8 J Yao. Photonics for ultrawideband communications. IEEE Microwave Magazine, 2009, 10(4): 82–95
https://doi.org/10.1109/MMM.2009.932287
9 F Li. Indoor positioning and navigation chips, key technologies for next-generation smart devices. 2019. Available at
10 Federal Communication Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, 2002
11 FiRa. What UWB does. Available at
12 J Li, S Fu, K Xu, J Wu, J Lin, M Tang, P Shum. Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator. Optics Letters, 2008, 33(3): 288–290
13 E Zhou, X Xu, K Lui, K K Wong. A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions. IEEE Photonics Technology Letters, 2010, 22(14): 1063–1065
https://doi.org/10.1109/LPT.2010.2050469
14 P Li, H Chen, M Chen, S Xie. Gigabit/s photonic generation, modulation, and transmission for a reconfigurable impulse radio UWB over fiber system. IEEE Photonics Journal, 2012, 4(3): 805–816
https://doi.org/10.1109/JPHOT.2012.2198804
15 F Zeng, J Yao. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photonics Technology Letters, 2006, 18(19): 2062–2064
https://doi.org/10.1109/LPT.2006.883310
16 Q Wang, J Yao. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express, 2007, 15(22): 14667–14672
17 M Shehata, H Mostafa, Y Ismail. On the theoretical limits of the power efficiency of photonically generated IR-UWB waveforms. Journal of Lightwave Technology, 2018, 36(10): 2017–2023
https://doi.org/10.1109/JLT.2018.2801760
18 H Feng, M P Fok, S Xiao, J Ge, Q Zhou, M Locke, R Toole, W Hu. A reconfigurable high-order UWB signal generation scheme using RSOA-MZI structure. IEEE Photonics Journal, 2014, 6(2): 1–7
https://doi.org/10.1109/JPHOT.2014.2306832
19 M Hongqian, W Muguang, J Shuisheng. Photonic generation of power-efficient UWB pulses adaptable to multiple modulation formats using a dual-drive Mach-Zehnder modulator. In: Proceedings of the 15th International Conference on Optical Communications and Networks (ICOCN). Hangzhou: IEEE, 2016, 1–3
20 T Y Liow, J Song, X Tu, A E J Lim, Q Fang, N Duan, M Yu, G Q Lo. Silicon optical interconnect device technologies for 40 Gb/s and beyond. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 8200312
https://doi.org/10.1109/JSTQE.2012.2218580
21 S T Abraha, C M Okonkwo, E Tangdiongga, A M Koonen. Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses. Optics Letters, 2011, 36(12): 2363–2365
22 B Luo, J Dong, Y Yu, X Zhang. Bandwidth-tunable single-carrier UWB monocycle generation using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, 2012, 24(18): 1646–1649
https://doi.org/10.1109/LPT.2012.2211866
23 Y Yue, H Huang, L Zhang, J Wang, J Y Yang, O F Yilmaz, J S Levy, M Lipson, A E Willner. UWB monocycle pulse generation using two-photon absorption in a silicon waveguide. Optics Letters, 2012, 37(4): 551–553
https://doi.org/10.1364/OL.37.000551 pmid: 22344103
24 Q Wang, J Yao. UWB doublet generation using nonlinearly-biased electro-optic intensity modulator. Electronics Letters, 2006, 42(22): 1304
https://doi.org/10.1049/el:20062134
25 V Moreno, M Rius, J Mora, M A Muriel, J Capmany. UWB monocycle generator based on the non-linear effects of an SOA-integrated structure. IEEE Photonics Technology Letters, 2014, 26(7): 690–693
https://doi.org/10.1109/LPT.2014.2302319
26 V Moreno, M J Connelly, J Romero-Vivas, L Krzczanowicz, J Mora, M A Muriel, J Capmany. Integrated 16-ps pulse generator based on a reflective SOA-EAM for UWB schemes. IEEE Photonics Technology Letters, 2016, 28(20): 2180–2182
https://doi.org/10.1109/LPT.2016.2586893
27 V Moreno, M Rius, J Mora, M A Muriel, J. Capmany Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI. Optics Express, 2013, 21(19): 22911–22917
28 T Wu, J Wu, Y Choi, Y Chiu. Novel scheme of optical Ultra-Wide-Band generation using a single electroabsorption modulator. In: Proceedings of IEEE LEOS Annual Meeting Conference. Belek-Antalya: IEEE, 2009, 509–510
29 Y Kuo, J Wu, R Chen, Y Chiu. Photonic Ultra-wide-band doublet pulse using tapered-directional coupler integrated electroabsorption modulator. In: Proceedings of the 21st Annual Wireless and Optical Communications Conference (WOCC). Kaohsiung: IEEE, 2012, 196–197
30 K Xu, X Wu, J Sung, Z Cheng. Amplitude and phase modulation of UWB monocycle pulses on a silicon photonic chip. IEEE Photonics Technology Letters, 2016, 28(3): 248–251
https://doi.org/10.1109/LPT.2015.2494000
31 F Liu, T Wang, Z Zhang, M Qiu, Y Su. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249
https://doi.org/10.1049/el.2009.1529
32 M Mirshafiei, S LaRochelle, L A Rusch. Optical UWB waveform generation using a micro-ring resonator. IEEE Photonics Technology Letters, 2012, 24(15): 1316–1318
https://doi.org/10.1109/LPT.2012.2197744
33 X Wu, K Xu, W Zhou, C W Chow, H K Tsang. Scalable ultra-wideband pulse generation based on silicon photonic integrated circuits. IEEE Photonics Technology Letters, 2017, 29(21): 1896–1899
https://doi.org/10.1109/LPT.2017.2755589
34 H Shao, W Chen, Y Zhao, H Chi, J Yang, X Jiang. Performance evaluation of photonic UWB generation based on silicon MZM. Optics Express, 2012, 20(7): 7398–7403
35 A E Miroshnichenko, S Flach, Y S Kivshar. Fano resonance in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
https://doi.org/10.1103/RevModPhys.82.2257
36 F Wang, X Wang, H Zhou, Q Zhou, Y Hao, X Jiang, M Wang, J Yang. Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer. Optics Express, 2009, 17(9): 7708–7716
https://doi.org/10.1364/OE.17.007708 pmid: 19399151
37 A V Dyshlyuk. Tunable Fano-like resonances in a bent single-mode waveguide-based Fabry-Perot resonator. Optics Letters, 2019, 44(2): 231–234
https://doi.org/10.1364/OL.44.000231 pmid: 30644868
38 C Zhang, G Kang, Y Xiong, T Xu, L Gu, X Gan, Y Pan, J Qu. Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance. Optics Express, 2020, 28(9): 12599–12608
https://doi.org/10.1364/OE.390966 pmid: 32403754
39 C M Chang, O Solgaard. Fano resonances in integrated silicon Bragg reflectors for sensing applications. Optics Express, 2013, 21(22): 27209–27218
https://doi.org/10.1364/OE.21.027209 pmid: 24216944
40 G Zhao, T Zhao, H Xiao, Z Liu, G Liu, J Yang, Z Ren, J Bai, Y Tian. Tunable Fano resonances based on microring resonator with feedback coupled waveguide. Optics Express, 2016, 24(18): 20187–20195
https://doi.org/10.1364/OE.24.020187 pmid: 27607626
41 L Zhou, A W Poon. Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers. Optics Letters, 2007, 32(7): 781–783
42 S Zheng, Z Ruan, S Gao, Y Long, S Li, M He, N Zhou, J Du, L Shen, X Cai, J Wang. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Optics Express, 2017, 25(21): 25655–25662
https://doi.org/10.1364/OE.25.025655 pmid: 29041230
43 Z Cheng, J Dong, X Zhang. Ultra-compact optical switch using single semi-symmetric Fano nanobeam cavity. Optics Letters, 2020, 45(8): 2363
https://doi.org/10.1364/OL.383250
44 G Dong, Wang Y, Zhang X. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Optics Letters, 2018, 43(24): 5977
45 W Zhang, J Yao. Thermally tunable ultracompact Fano resonator on a silicon photonic chip. Optics Letters, 2018, 43(21): 5415–5418
https://doi.org/10.1364/OL.43.005415 pmid: 30383021
46 S Li, Y Zhang, X Song, Y Wang, L Yu. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Optics Express, 2016, 24(14): 15351–15361
https://doi.org/10.1364/OE.24.015351 pmid: 27410811
47 B Zhu, W Zhang, S Pan, J Yao. High-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated fano resonator. Journal of Lightwave Technology, 2019, 37(11): 2527–2533
https://doi.org/10.1109/JLT.2018.2885224
48 M F Limonov, M V Rybin, A N Poddubny, Y S. Kivshar Fano resonances in photonics. Nature Photonics, 2017, 11: 543–554
49 J Chen, L Zhou, G Zhou, Y Zhou, Y Zhong, S Liu, Y Guo, L Liu. Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction. In: Proceedings of the 10th International Conference on Information Optics and Photonics (CIOP). Beijing: SPIE, 2018, 55
50 P Li, H Chen, X Wang, H Yu, M Chen, S Xie. Photonic generation and transmission of 2-Gbit/s power-efficient IR-UWB signals employing an electro-optic phase modulator. IEEE Photonics Technology Letters, 2013, 25(2): 144–146
https://doi.org/10.1109/LPT.2012.2230158
[1] Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Front. Optoelectron., 2019, 12(1): 31-40.
[2] Wei Ting CHEN,Pin Chieh WU,Kuang-Yu YANG,Din Ping TSAI. Manipulation of spectral amplitude and phase with plasmonic nano-structures for information storage[J]. Front. Optoelectron., 2014, 7(4): 437-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed