Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 256-264    https://doi.org/10.1007/s12200-020-1013-3
RESEARCH ARTICLE
Influence of precursor concentration on printable mesoscopic perovskite solar cells
Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI(), Hongwei HAN
Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(2237 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Over the last decade, the power conversion efficiency of hybrid organic–inorganic perovskite solar cells (PSCs) has increased dramatically from 3.8% to 25.2%. This rapid progress has been possible due to the accurate control of the morphology and crystallinity of solution-processed perovskites, which are significantly affected by the concentration of the precursor used. This study explores the influence of precursor concentrations on the performance of printable hole-conductor-free mesoscopic PSCs via a simple one-step drop-coating method. The results reveal that lower concentrations lead to larger grains with inferior pore filling, while higher concentrations result in smaller grains with improved pore filling. Among concentrations ranging from 0.24–1.20 M, devices based on a moderate strength of 0.70 M were confirmed to exhibit the best efficiency at 16.32%.

Keywords printable perovskite solar cell (PSC)      precursor concentration      crystallization      morphology     
Corresponding Author(s): Anyi MEI   
Just Accepted Date: 19 May 2020   Online First Date: 11 June 2020    Issue Date: 27 September 2020
 Cite this article:   
Shuangquan JIANG,Yusong SHENG,Yue HU, et al. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1013-3
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/256
Fig.1  Top-view SEM images of drop-coated perovskite films on a porous ZrO2 layer with different precursor concentrations at 10000´ magnification: (a) bare ZrO2, (b) 0.24, (c) 0.41, (d) 0.55, (e) 0.70, (f) 0.83, (g) 1.00, and (h) 1.20 M concentrations. At 80000´ magnification: (i) 0.24, (j) 0.70, (k) 0.83, and (l) 1.20 M concentrations
Fig.2  Optical characterization of drop-coated perovskite films on a porous ZrO2 layer: (a) XRD patterns, (b) UV–Vis spectra, and (c) TRPL spectra of drop-coated perovskite films on a porous ZrO2 layer
Fig.3  (a) Schematic, (b) typical cross-sectional SEM image, (c) energy-level alignment of PMPSCs, (d) J–V curves, (e) steady-state current density output, and (f) IPCE of PMPSCs filled with perovskite precursors at different concentrations
scan direction VOC/V JSC/(mA·cm−2) FF PCE/% steady-state
current density/(mA·cm−2)
bias
voltage/V
steady-state PCE/%
0.24 M reverse 0.92 23.00 0.68 14.29 19.93 0.72 14.35
forward 0.96 22.91 0.70 15.38
0.41 M reverse 0.94 23.10 0.68 14.84 20.35 0.72 14.65
forward 0.98 23.04 0.69 15.67
0.55 M reverse 0.96 23.23 0.68 15.11 20.96 0.72 15.09
forward 0.98 23.20 0.70 16.00
0.70 M reverse 0.94 23.39 0.70 15.31 21.32 0.72 15.35
forward 0.96 23.32 0.73 16.32
0.83 M reverse 0.94 23.31 0.69 15.06 21.05 0.72 15.16
forward 0.96 23.26 0.72 16.12
1.00 M reverse 0.94 23.04 0.69 14.85 20.81 0.72 14.98
forward 0.98 22.93 0.72 16.09
1.20 M reverse 0.94 23.10 0.68 14.83 20.59 0.72 14.82
forward 0.96 23.02 0.72 15.89
Tab.1  J–V parameters and steady-state outputs of PMPSCs prepared with precursors of different concentrations
Fig.4  Statistical results of the performance of PMPSCs filled with perovskite precursors of different concentrations: (a) VOC, (b) JSC, (c) FF, and (d) PCE
Fig.5  Cross-sectional SEM images of PMPSCs filled with perovskite precursors of different concentrations: (a) 0.24, (b) 0.70, and (c) 1.20 M
Fig.6  Reverse and forward scan J−V curves of the optimized PMPSC prepared with a precursor at a concentration of 0.70 M
1 M Saliba, T Matsui, K Domanski, J Y Seo, A Ummadisingu, S M Zakeeruddin, J P Correa-Baena, W R Tress, A Abate, A Hagfeldt, M Grätzel. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309): 206–209
https://doi.org/10.1126/science.aah5557 pmid: 27708053
2 S Liu, Y Guan, Y Sheng, Y Hu, Y Rong, A Mei, H Han. A review on additives for halide perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1902492
https://doi.org/10.1002/aenm.201902492
3 S D Stranks, G E Eperon, G Grancini, C Menelaou, M J P Alcocer, T Leijtens, L M Herz, A Petrozza, H J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
https://doi.org/10.1126/science.1243982 pmid: 24136964
4 N J Jeon, J H Noh, W S Yang, Y C Kim, S Ryu, J Seo, S I Seok. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476–480
https://doi.org/10.1038/nature14133 pmid: 25561177
5 J Tong, Z Song, D H Kim, X Chen, C Chen, A F Palmstrom, P F Ndione, M O Reese, S P Dunfield, O G Reid, J Liu, F Zhang, S P Harvey, Z Li, S T Christensen, G Teeter, D Zhao, M M Al-Jassim, M F A M van Hest, M C Beard, S E Shaheen, J J Berry, Y Yan, K Zhu. Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439): 475–479
https://doi.org/10.1126/science.aav7911 pmid: 31000592
6 H Min, M Kim, S U Lee, H Kim, G Kim, K Choi, J H Lee, S I Seok. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753
https://doi.org/10.1126/science.aay7044 pmid: 31699938
7 M Kim, G H Kim, T K Lee, I W Choi, H W Choi, Y Jo, Y J Yoon, J W Kim, J Lee, D Huh, H Lee, S K Kwak, J Y Kim, D S Kim. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3(9): 2179–2192
8 R Lin, K Xiao, Z Qin, Q Han, C Zhang, M Wei, M I Saidaminov, Y Gao, J Xu, M Xiao, A Li, J Zhu, E H Sargent, H Tan. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4(10): 864–873
https://doi.org/10.1038/s41560-019-0466-3
9 W Nie, H Tsai, R Asadpour, J C Blancon, A J Neukirch, G Gupta, J J Crochet, M Chhowalla, S Tretiak, M A Alam, H L Wang, A D Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
https://doi.org/10.1126/science.aaa0472 pmid: 25635093
10 X Gong, M Li, X B Shi, H Ma, Z K Wang, L S Liao. Controllable perovskite crystallization by water additive for high-performance solar cells. Advanced Functional Materials, 2015, 25(42): 6671–6678
https://doi.org/10.1002/adfm.201503559
11 D Bi, C Yi, J Luo, J D Décoppet, F Zhang, S M Zakeeruddin , X Li, A Hagfeldt, M Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142
https://doi.org/10.1038/nenergy.2016.142
12 Y Zhou, O S Game, S Pang, N P Padture. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. Journal of Physical Chemistry Letters, 2015, 6(23): 4827–4839
https://doi.org/10.1021/acs.jpclett.5b01843 pmid: 26560696
13 D P McMeekin, Z Wang, W Rehman, F Pulvirenti, J B Patel, N K Noel, M B Johnston, S R Marder, L M Herz, H J Snaith. Crystallization kinetics and morphology control of Formamidinium-Cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039
https://doi.org/10.1002/adma.201607039 pmid: 28561912
14 P K Nayak, D T Moore, B Wenger, S Nayak, A A Haghighirad, A Fineberg, N K Noel, O G Reid, G Rumbles, P Kukura, K A Vincent, H J Snaith. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303
https://doi.org/10.1038/ncomms13303 pmid: 27830749
15 N K Noel, M Congiu, A J Ramadan, S Fearn, D P McMeekin, J B Patel, M B Johnston, B Wenger, H J Snaith. Unveiling the Influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule, 2017, 1(2): 328–343
https://doi.org/10.1016/j.joule.2017.09.009
16 L Etgar, P Gao, Z Xue, Q Peng, A K Chandiran, B Liu, M K Nazeeruddin, M Grätzel. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396–17399
https://doi.org/10.1021/ja307789s pmid: 23043296
17 N J Jeon, J H Noh, Y C Kim, W S Yang, S Ryu, S I Seok. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903
https://doi.org/10.1038/nmat4014 pmid: 24997740
18 J Chen, Y Xiong, Y Rong, A Mei, Y Sheng, P Jiang, Y Hu, X Li, H Han. Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy, 2016, 27(Supplement C): 130–137
https://doi.org/10.1016/j.nanoen.2016.06.047
19 K Yan, M Long, T Zhang, Z Wei, H Chen, S Yang, J Xu. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. Journal of the American Chemical Society, 2015, 137(13): 4460–4468
https://doi.org/10.1021/jacs.5b00321 pmid: 25780941
20 J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao, M K Nazeeruddin, M Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
https://doi.org/10.1038/nature12340 pmid: 23842493
21 D Bi, A M El-Zohry, A Hagfeldt, G Boschloo. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. ACS Photonics, 2015, 2(5): 589–594
https://doi.org/10.1021/ph500255t
22 H Zhang, J Mao, H He, D Zhang, H L Zhu, F Xie, K S Wong, M Grätzel, W C H Choy. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Advanced Energy Materials, 2015, 5(23): 1501354
https://doi.org/10.1002/aenm.201501354
23 S Wieghold, J P Correa-Baena, L Nienhaus, S Sun, K E Shulenberger, Z Liu, J S Tresback, S S Shin, M G Bawendi, T Buonassisi. Precursor concentration affects grain size, crystal orientation, and local performance in mixed-ion lead perovskite solar cells. ACS Applied Energy Materials, 2018, 1(12): 6801–6808
https://doi.org/10.1021/acsaem.8b00913
24 Z Ku, Y Rong, M Xu, T Liu, H Han. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132
https://doi.org/10.1038/srep03132 pmid: 24185501
25 C Tian, A Mei, S Zhang, H Tian, S Liu, F Qin, Y Xiong, Y Rong, Y Hu, Y Zhou, S Xie, H Han. Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53: 160–167
https://doi.org/10.1016/j.nanoen.2018.08.050
26 A Mei, X Li, L Liu, Z Ku, T Liu, Y Rong, M Xu, M Hu, J Chen, Y Yang, M Grätzel, H Han. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298
https://doi.org/10.1126/science.1254763 pmid: 25035487
27 Y Rong, Y Hu, A Mei, H Tan, M I Saidaminov, S I Seok, M D McGehee, E H Sargent, H Han. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235
https://doi.org/10.1126/science.aat8235 pmid: 30237326
28 Y Ming, M Xu, S Liu, D Li, Q Wang, X Hou, Y Hu, Y Rong, H Han. Ethanol stabilized precursors for highly reproducible printable mesoscopic perovskite solar cells. Journal of Power Sources, 2019, 424: 261–267
https://doi.org/10.1016/j.jpowsour.2019.03.110
29 Y Rong, Y Hu, S Ravishankar, H Liu, X Hou, Y Sheng, A Mei, Q Wang, D Li, M Xu, J Bisquert, H Han. Tunable hysteresis effect for perovskite solar cells. Energy & Environmental Science, 2017, 10(11): 2383–2391
https://doi.org/10.1039/C7EE02048A
30 H J Snaith, A Abate, J M Ball, G E Eperon, T Leijtens, N K Noel, S D Stranks, J T Wang, K Wojciechowski, W Zhang. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515
https://doi.org/10.1021/jz500113x pmid: 26270088
[1] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[2] Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed