Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 513-521    https://doi.org/10.1007/s12200-020-1079-y
RESEARCH ARTICLE
A QoT prediction technique based on machine learning and NLSE for QoS and new lightpaths in optical communication networks
Yongfeng FU1(), Jing CHEN1, Weiming WU1, Yu HUANG2, Jie HONG1, Long CHEN1, Zhongbin LI3
1. Hainan Power Grid Co., Ltd., Haikou 570100, China
2. Power Dispatching Control Center of China, Southern Power Grid, Shenzhen 5180008, China
3. China Southern Power Grid Digital Power Grid Research Institute Co., Ltd., Guangzhou 511458, China
 Download: PDF(626 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we proposed a quality of transmission (QoT) prediction technique for the quality of service (QoS) link setup based on machine learning classifiers, with synthetic data generated using the transmission equations instead of the Gaussian noise (GN) model. The proposed technique uses some link and signal characteristics as input features. The bit error rate (BER) of the signals was compared with the forward error correction threshold BER, and the comparison results were employed as labels. The transmission equations approach is a better alternative to the GN model (or other similar margin-based models) in the absence of real data (i.e., at the deployment stage of a network) or the case that real data are scarce (i.e., for enriching the dataset/reducing probing lightpaths); furthermore, the three classifiers trained using the data of the transmission equations are more reliable and practical than those trained using the data of the GN model. Meanwhile, we noted that the priority of the three classifiers should be support vector machine (SVM)>K nearest neighbor (KNN)>logistic regression (LR) as shown in the results obtained by the transmission equations, instead of SVM>LR>KNN as in the results of the GN model.

Keywords optical networks      quality of transmission (QoT)      quality of service (QoS)      link establishment      physical performances      bit error rate (BER)      machine learning     
Corresponding Author(s): Yongfeng FU   
Just Accepted Date: 10 November 2020   Online First Date: 24 December 2020    Issue Date: 06 December 2021
 Cite this article:   
Yongfeng FU,Jing CHEN,Weiming WU, et al. A QoT prediction technique based on machine learning and NLSE for QoS and new lightpaths in optical communication networks[J]. Front. Optoelectron., 2021, 14(4): 513-521.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1079-y
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/513
Fig.1  Classifier structure
Fig.2  (a) Simulation setup. (b) Workflow of the classification process. MUX: multiplexer, IQ modulator: in-phase quadrature modulator, SSMF: standard single-mode fiber, EDFA: Erbium-doped fiber amplifier, DSP: digital signal processing
Fig.3  Three KB cases
classifier type case I case II case III
KNN LR SVM KNN LR SVM KNN LR SVM
accuracy/% 97.87 89.63 99.17 83.24 84.44 88.24 97.13 85.37 99.35
error rate/% 2.13 10.37 0.83 16.76 15.56 11.76 2.87 14.63 0.65
false positives rate/% 1.02 4.63 0.37 9.26 8.33 5.00 1.02 6.39 0.37
Tab.1  Performance of the classifiers
Fig.4  Confusion matrix for (a) case I, (b) case II, and (c) case III
1 P Kulkarni, A Tzanakaki, C M Machuka, I Tomkos. Benefits of Q-factor based routing in WDM metro networks. In: Proceedings of European Conference on Optical Communication (ECOC). Glasgow: IET, 2005, Th3.5.7
2 Q Feng, W Li, Q Zheng, Y Wang, C Hu, Y Xie, W Lian. The OTDR with high dynamic range based on LFM signal and FDM. IEEE Photonics Technology Letters, 2020, 32(7): 359–362
https://doi.org/10.1109/LPT.2020.2974664
3 C Hu, W Li, H Zheng, Q Feng, Q Zheng, Y Wang. A novel cost-effective and distributed in-band OSNR monitoring method using Gaussian process regression. IEEE Photonics Journal, 2019, 11(4): 720431
https://doi.org/10.1109/JPHOT.2019.2931918
4 S Pachnicke, T Paschenda, P M Krummrich. Physical impairment based regenerator placement and routing in translucent optical networks. In: Proceedings of Optical Fiber Communication Conference. San Diego: IEEE, 2008, OWA2
5 G Markidis, S Sygletos, A Tzanakaki, I Tomkos. Impairment-constraint-based routing in ultralong-haul optical networks with 2R regeneration. IEEE Photonics Technology Letters, 2007, 19(6): 420–422
https://doi.org/10.1109/LPT.2007.891653
6 C T Politi, V Anagnostopoulos, C Matrakidis, A Stavdas. Physical layer impairment aware routing algorithms based on analytically calculated Q-factor. In: Proceedings of Optical Fiber Communication Conference. Anaheim: IEEE, 2006, OFG1
7 L Barletta, A Giusti, C Rottondi, M Tornatore. QoT estimation for unestablished lighpaths using machine learning. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: IEEE, 2017, Th1J.1
8 Q Zheng, W Li, R Yan, Q Feng, Y Xie, Y Wang. XPM mitigation in WDM systems using split nonlinearity compensation. IEEE Photonics Journal, 2019, 11(6): 7205411
https://doi.org/10.1109/JPHOT.2019.2956319
9 Q Zheng, Z Yuan, Y Li, W Li. Optimization of split transmitter-receiver digital nonlinearity compensation in Bi-directional Raman unrepeatered system. Applied Sciences (Basel, Switzerland), 2018, 8(6): 972
https://doi.org/10.3390/app8060972
10 J Shao, X Liang, S Kumar. Comparison of split-step Fourier schemes for simulating fiber optic communication systems. IEEE Photonics Technology Letters, 2014, 6(4): 7200515
11 P Poggiolini, G Bosco, A Carena, V Curri, Y Jiang, F Forghieri. The GN-model of fiber non-linear propagation and its applications. Journal of Lightwave Technology, 2014, 32(4): 694–721
https://doi.org/10.1109/JLT.2013.2295208
12 W Mo, Y Huang, S Zhang, E Ip, D C Kilper, Y Aono, T Tajima. ANN-based transfer learning for QoT prediction in real-time mixed line-rate systems. In: Proceedings of Optical Fiber Communication Conference. San Diego: IEEE, 2018, W4F.3
13 J Mata, I d Miguel, R J Durán, J C Aguado, N Merayo, L Ruiz, P Fernández, R M Lorenzo, E J Abril, I Tomkos. Supervised machine learning techniques for quality of transmission assessment in optical networks. In: Proceedings of International Conference on Transparent Optical Networks (ICTON). Bucharest: IEEE, 2018, We.B3.5
14 R M Morais, J Pedro. Evaluating machine learning models for QoT estimation. In: Proceedings of International Conference on Transparent Optical Networks (ICTON). Bucharest: IEEE, 2018, Tu.A3.4
15 M Bouda, S Oda, Y Akiyama, D Paunovic, T Hoshida, P Palacharla, T Ikeuchi. Demonstration of continuous improvement in open optical network design by QoT prediction using machine learning. In: Proceedings of Optical Fiber Communication Conference. San Diego: IEEE, 2019, M3Z.2
16 T Panayiotou, G Savva, B Shariati, I Tomkos, G Ellinas. Machine learning for QoT estimation of unseen optical network states. In: Proceedings of Optical Fiber Communication Conference. San Diego: IEEE, 2019, Tu2E.2
17 D Azzimonti, C Rottondi, M Tornatore. Using active learning to decrease probes for QoT estimation in optical networks. In: Proceedings of Optical Fiber Communication Conference. San Diego: IEEE, 2019, Th1H.1
18 S Aladin, C Tremblay. Cognitive tool for estimating the QoT of new lightpaths. In: Proceedings of Optical Fiber Communication Conference. San Diego: IEEE, 2018, M3A.3
19 R M Morais, J Pedro. Machine learning models for estimating quality of transmission in DWDM networks. Journal of Optical Communications and Networking, 2018, 10(10): D84–D99
https://doi.org/10.1364/JOCN.10.000D84
20 R Dar, M Feder, A Mecozzi, M Shtaif. Accumulation of nonlinear interference noise in fiber-optic systems. Optics Express, 2014, 22(12): 14199–14211
https://doi.org/10.1364/OE.22.014199 pmid: 24977517
[1] Jean TEMGA,Deming LIU,Minming ZHANG. Improved pilot data aided feed forward based on maximum likelihood for carrier phase jitter recovery in coherent optical orthogonal frequency division multiplexing[J]. Front. Optoelectron., 2014, 7(4): 493-500.
[2] Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Front Optoelec, 2013, 6(1): 46-56.
[3] Khaleel S. ALTOWIJ, Abdulsalam ALKHOLIDI, Habib HAMAM. Effect of clear atmospheric turbulence on quality of free space optical communications in Yemen[J]. Front Optoelec Chin, 2010, 3(4): 423-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed