Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (1) : 110-129    https://doi.org/10.1007/s12200-020-1101-4
REVIEW ARTICLE
Time-domain terahertz spectroscopy in high magnetic fields
Andrey BAYDIN1(), Takuma MAKIHARA2, Nicolas Marquez PERACA2, Junichiro KONO1,2,3()
1. Department of Electrical and Computer Engineering, Rice University, Houston, TX 70005, USA
2. Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
3. Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
 Download: PDF(2571 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

There are a variety of elementary and collective terahertz-frequency excitations in condensed matter whose magnetic field dependence contains significant insight into the states and dynamics of the electrons involved. Often, determining the frequency, temperature, and magnetic field dependence of the optical conductivity tensor, especially in high magnetic fields, can clarify the microscopic physics behind complex many-body behaviors of solids. While there are advanced terahertz spectroscopy techniques as well as high magnetic field generation techniques available, a combination of the two has only been realized relatively recently. Here, we review the current state of terahertz time-domain spectroscopy (THz-TDS) experiments in high magnetic fields. We start with an overview of time-domain terahertz detection schemes with a special focus on how they have been incorporated into optically accessible high-field magnets. Advantages and disadvantages of different types of magnets in performing THz-TDS experiments are also discussed. Finally, we highlight some of the new fascinating physical phenomena that have been revealed by THz-TDS in high magnetic fields.

Keywords high magnetic field      terahertz time-domain spectroscopy (THz-TDS)     
Corresponding Author(s): Andrey BAYDIN,Junichiro KONO   
Just Accepted Date: 20 November 2020   Online First Date: 16 December 2020    Issue Date: 19 April 2021
 Cite this article:   
Andrey BAYDIN,Takuma MAKIHARA,Nicolas Marquez PERACA, et al. Time-domain terahertz spectroscopy in high magnetic fields[J]. Front. Optoelectron., 2021, 14(1): 110-129.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1101-4
https://academic.hep.com.cn/foe/EN/Y2021/V14/I1/110
Fig.1  Free-space THz time-domain spectroscopy (THz-TDS) system combined with a superconducting magnet. The generation and detection of THz radiation is achieved via optical rectification and the electro-optic effect, respectively, using ZnTe crystals. A pellicle beamsplitter (PBS) is used to combine the THz and near-infrared probe beams. A quarter-wave plate (QWP) and a Wollaston prism (WP) are commonly used to detect the polarization rotation of the probe beam
Fig.2  Free-space THz time-domain spectroscopy system combined with the Split-Florida Helix Magnet [68]. The broadband THz pulses are generated by mixing the fundamental and its second-harmonic laser field (generated from a frequency-doubling BBO crystal) in a nitrogen-purged atmosphere. Laser pulses are focused and collimated using off-axis parabolic (OAP) mirrors. The THz wavevector is perpendicular to the applied magnetic field (Voigt geometry). For detection, THz pulses are focused onto a THz-air breakdown coherent detector (THz-ABCD). A portion of the fundamental beam is used to gate the THz-ABCD to recover the full electric field waveform
Fig.3  Free-space single-shot THz time-domain spectroscopy system combined with a pulsed magnet [41,42]. THz pulses strong enough for single-shot detection are generated using LiNbO3. Detection is performed in a single-shot manner using a reflective echelon, which stretches the probe pulse in the time domain. The inset at the top shows that for a 1-kHz repetition-rate laser, three measurements can be done on the rising edge of the magnetic field pulse. A pellicle beamsplitter (PBS) is used to combine the THz and near-infrared probe beams. A quarter-wave plate (QWP) and a Wollaston prism (WP) are commonly used to detect the polarization rotation of the probe beam
superconducting resistive pulsed
magnetic field <~10 T <~25 T <~30 T
THz sampling mechanism delay stage [4758] delay stage [68] ECOPS [33,75], ASOPS [29], reflective echelons [41,42], rotating delay line [34]
additional notes Superconducting magnets are easiest to implement and benefit from having static fields, albeit the weakest fields. Resistive magnets provide the strongest static fields but are only available at national laboratories due to their demand for resources. Pulsed magnets provide the strongest magnetic fields but require sophisticated protocols for THz sampling.
Tab.1  Summary of magnets for high-field THz time-domain magnetospectroscopy
Fig.4  Superradiant decay of cyclotron resonance in ultrahigh-mobility two-dimensional electron gases [63]. (a) Magnetic field dependence of CR oscillations in the time domain, showing peaks (blue) and valleys (red). (b) Frequency-domain version of (a). Black dashed line: a linear fit with a cyclotron mass of 0.069m0. (c) Magnetic field dependence of the CR decay time, tCR at 3 K. (d) Temperature dependence of tCR at 2.5 T and the DC scattering time, tDC, determined from the DC mobility, µ = etDC/m*. (e) CR oscillations in the time domain for samples with different densities by controlling the illumination time. (f) CR decay rate as a function of electron density. Blue solid circle: sample 2 (low density). Red solid circles: sample 1 (high density). The blue dashed line represents a theoretical relation expected from the phenomenon of superradiance [102] without any adjustable parameter (with nGaAs = 3.6 and m* = 0.069m0)
Fig.5  Magneto-optical Kerr rotation in monolayer graphene. (a) Schematic of the experimental configuration depicting the transmission of a THz pulse through the sample. (b) Time-domain waveform of the THz pulse transmitted through the sample. (c) Magnetic field dependence of the Kerr rotation at 1 THz for the sample with a Fermi energy of 70 meV. The inset shows Kerr rotation spectra at the indicated magnetic fields. Adapted from Ref. [116]
Fig.6  Quantized Faraday rotation of topological surface states in Bi2Se3. (a) Schematic diagram of the Faraday rotation experimental setup. P1, P2, and P3 are polarizers. The polarization acquires an ellipticity simultaneously, as shown in (b). (c) Real part of the Faraday rotation of 10-QL Bi2Se3 films with MoO3 at 4.5 K at various magnetic fields [color-coded as in (d)]. The dash-dotted line is the theoretical expectation. (d) Imaginary part of the Faraday rotation. A representative cyclotron frequency is marked by a red arrow for data at 2.5 T. (e) Quantized Faraday rotation for different samples. Dashed black lines are theoretical expectation values assuming certain values for the filling factor of the surface states. (f) DC Hall resistance of a representative 8-QL sample. Adapted from Ref. [58]
Fig.7  Ultrastrong coupling between THz split-ring resonators and the CR of a high-mobility 2DEG. (a) Transmission as a function of B at 10 K. (b) A vertical cut from panel (a) in the anticrossing region at B = 1.2 T. Both the upper-polariton and lower-polariton modes are observed together with the free-space CR (CYC) arising from the uncovered regions of the 2DEG. (c) Polariton branches plotted as a function of magnetic field. Solid lines are theoretical calculations. Inset: schematic of the 500 GHz resonator deposited on the sample surface. Adapted from Ref. [55]
Fig.8  Vacuum Bloch–Siegert shift in Landau polaritons with ultrahigh cooperativity [65]. Transmission spectra in the vicinity of the anticrossing region between CR and the first cavity mode (red dashed line) for simulations using the full Hamiltonian (solid lines) is shown. The counter-rotating and A2 terms have to be included in the full Hamiltonian. Experimental data points are shown as open circles
Fig.9  THz-TDS of magnon-magnon ultrastrong coupling in YFeO3 evidencing dominant vacuum Bloch−Siegert shifts [42]. (a) Schematic of THz magnetospectroscopy studies of YFeO3 in a tilted magnetic field. HDC was applied in the b-c plane at an angle of q with respect to the c-axis, with kTHz//HDC and HTHz polarized in the b-c plane. (b) Transmitted THz waveform for q = 20° at µ0|HDC| = 12.60 T displaying beating in the time domain and two peaks in the frequency domain. (c) Magnon power spectra for q = 20° and q = 40° at different HDC, displaying larger frequency splitting for larger q. (d) Experimentally measured magnon frequencies for q = 0°, 40°, 90° versus µ0|HDC| (black dots) with calculated resonance magnon frequencies (solid red lines) and decoupled qFM and qAFM magnon frequencies (black dashed-dotted lines). The upper mode frequency becomes lower than the qAFM frequency at q = 90°, indicating a dominant vacuum Bloch−Siegert shift compared to the vacuum Rabi splitting-induced shift
1 M C Nuss, J Orenstein. Terahertz time-domain spectroscopy. In: Grüner G, ed. Millimeter and Sub-millimeter Wave Spectroscopy of Solids. Berlin: Springer-Verlag, 1998, Chap. 2, 7–50
2 C A Schmuttenmaer. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews, 2004, 104(4): 1759–1780
https://doi.org/10.1021/cr020685g pmid: 15080711
3 Y S Lee. Principles of Terahertz Science and Technology, vol. 170. Berlin: Springer, 2009
4 P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
5 R Ulbricht, E Hendry, J Shan, T F Heinz, M Bonn. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586
https://doi.org/10.1103/RevModPhys.83.543
6 J Neu, C A Schmuttenmaer. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). Journal of Applied Physics, 2018, 124(23): 231101
https://doi.org/10.1063/1.5047659
7 K Cong, G T II Noe, J Kono. Excitons in Magnetic Fields. Oxford: Elsevier, 2018, 63–81
8 A H MacDonald, E H Rezayi. Fractional quantum Hall effect in a two-dimensional electron-hole fluid. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 3224–3227
https://doi.org/10.1103/PhysRevB.42.3224 pmid: 9995833
9 A B Dzyubenko, Y E Lozovik. Symmetry of Hamiltonians of quantum two-component systems: condensate of composite particles as an exact eigenstate. Journal of Physics A, Mathematical and General, 1991, 24(2): 415–424
https://doi.org/10.1088/0305-4470/24/2/015
10 V M Apal’kov, E I Rashba. Magnetospectroscopy of 2D electron-gas: cusps in emission-spectra and Coulomb gaps. JETP Letters, 1991, 53: 442–448
11 E I Rashba, M D Sturge, H W Yoon, L N Pfeiffer. Hidden symmetry and the magnetically induced “Mott transition” in quantum wells containing an electron gas. Solid State Communications, 2000, 114(11): 593–596
https://doi.org/10.1016/S0038-1098(00)00117-4
12 C Proust, L Taillefer. The remarkable underlying ground states of cuprate superconductors. Annual Review of Condensed Matter Physics, 2019, 10(1): 409–429
https://doi.org/10.1146/annurev-conmatphys-031218-013210
13 Z Shi, P G Baity, T Sasagawa, D Popović. Vortex phase diagram and the normal state of cuprates with charge and spin orders. Science Advances, 2020, 6(7): eaay8946
https://doi.org/10.1126/sciadv.aay8946 pmid: 32110736
14 S Ran, I L Liu, Y S Eo, D J Campbell, P M Neves, W T Fuhrman, S R Saha, C Eckberg, H Kim, D Graf, F Balakirev, J Singleton, J Paglione, N P Butch. Extreme magnetic field-boosted superconductivity. Nature Physics, 2019, 15(12): 1250–1254
https://doi.org/10.1038/s41567-019-0670-x
15 C R Dean, A F Young, P Cadden-Zimansky, L Wang, H Ren, K Watanabe, T Taniguchi, P Kim, J Hone, K L Shepard. Multicomponent fractional quantum Hall effect in graphene. Nature Physics, 2011, 7(9): 693–696
https://doi.org/10.1038/nphys2007
16 P J Moll, A C Potter, N L Nair, B J Ramshaw, K A Modic, S Riggs, B Zeng, N J Ghimire, E D Bauer, R Kealhofer, F Ronning, J G Analytis. Magnetic torque anomaly in the quantum limit of Weyl semimetals. Nature Communications, 2016, 7(1): 12492
https://doi.org/10.1038/ncomms12492 pmid: 27545105
17 Q Wu, X C Zhang. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
https://doi.org/10.1063/1.114909
18 Q Wu, X C Zhang. Ultrafast electro-optic field sensors. Applied Physics Letters, 1996, 68(12): 1604–1606
https://doi.org/10.1063/1.115665
19 A Nahata, A S Weling, T F Heinz. A wide-band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters, 1996, 69(16): 2321–2323
https://doi.org/10.1063/1.117511
20 Q Wu, X C Zhang. 7 terahertz broadband GaP electro-optic sensor. Applied Physics Letters, 1997, 70(14): 1784–1786
https://doi.org/10.1063/1.118691
21 R Huber, A Brodschelm, F Tauser, A Leitenstorfer. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters, 2000, 76(22): 3191–3193
https://doi.org/10.1063/1.126625
22 K Liu, J Xu, X C Zhang. GaSe crystals for broadband terahertz wave detection. Applied Physics Letters, 2004, 85(6): 863–865
https://doi.org/10.1063/1.1779959
23 P R Smith, D H Auston, M C Nuss. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260
https://doi.org/10.1109/3.121
24 X Lu, N Karpowicz, X C Zhang. Broadband terahertz detection with selected gases. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A66–A73
https://doi.org/10.1364/JOSAB.26.000A66
25 P A Elzinga, R J Kneisler, F E Lytle, Y Jiang, G B King, N M Laurendeau. Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling. Applied Optics, 1987, 26(19): 4303–4309
https://doi.org/10.1364/AO.26.004303 pmid: 20490226
26 C Janke, M Först, M Nagel, H Kurz, A Bartels. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Optics Letters, 2005, 30(11): 1405–1407
https://doi.org/10.1364/OL.30.001405 pmid: 15981548
27 T Yasui, E Saneyoshi, T Araki. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Applied Physics Letters, 2005, 87(6): 061101
https://doi.org/10.1063/1.2008379
28 A Bartels, R Cerna, C Kistner, A Thoma, F Hudert, C Janke, T Dekorsy. Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. Review of Scientific Instruments, 2007, 78(3): 035107
https://doi.org/10.1063/1.2714048 pmid: 17411217
29 B Spencer, W F Smith, M T Hibberd, P Dawson, M Beck, A Bartels, I Guiney, C J Humphreys, D M Graham. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique. Applied Physics Letters, 2016, 108(21): 212101
https://doi.org/10.1063/1.4948582
30 F Tauser, C Rausch, J H Posthumus, F Lison. Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers. In: Proceedings of Commercial and Biomedical Applications of Ultrafast Lasers VIII. San Jose: SPIE, 2008, 68810O
31 Y Kim, D S Yee. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Optics Letters, 2010, 35(22): 3715–3717
https://doi.org/10.1364/OL.35.003715 pmid: 21081973
32 J Liu, M K Mbonye, R Mendis, D M Mittleman. Measurement of terahertz pulses using electronically controlled optical sampling (ECOPS). In: Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications. San Jose: IEEE, 2010, 1–2
33 G T Noe II, Q Zhang, J Lee, E Kato, G L Woods, H Nojiri, J Kono. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics, 2014, 53(26): 5850–5855
https://doi.org/10.1364/AO.53.005850 pmid: 25321662
34 D Molter, F Ellrich, T Weinland, S George, M Goiran, F Keilmann, R Beigang, J Léotin. High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field. Optics Express, 2010, 18(25): 26163–26168
https://doi.org/10.1364/OE.18.026163 pmid: 21164965
35 S M Teo, B K Ofori-Okai, C A Werley, K A Nelson. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Review of Scientific Instruments, 2015, 86(5): 051301
https://doi.org/10.1063/1.4921389 pmid: 26026507
36 Y Minami, Y Hayashi, J Takeda, I Katayama. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror. Applied Physics Letters, 2013, 103(5): 051103
https://doi.org/10.1063/1.4817011
37 M Topp, P Rentzepis, R Jones. Time-resolved absorption spectroscopy in the 10–12-sec range. Journal of Applied Physics, 1971, 42(9): 3415–3419
https://doi.org/10.1063/1.1660747
38 M Topp, P Rentzepis, R Jones. Time resolved picosecond emission spectroscopy of organic dye lasers. Chemical Physics Letters, 1971, 9(1): 1–5
https://doi.org/10.1016/0009-2614(71)80165-3
39 K Y Kim, B Yellampalle, A J Taylor, G Rodriguez, J H Glownia. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons. Optics Letters, 2007, 32(14): 1968–1970
https://doi.org/10.1364/OL.32.001968 pmid: 17632612
40 I Katayama, H Sakaibara, J Takeda. Real-time time-frequency imaging of ultrashort laser pulses using an echelon mirror. Japanese Journal of Applied Physics, 2011, 50(10): 102701
https://doi.org/10.1143/JJAP.50.102701
41 G T Noe II, I Katayama, F Katsutani, J J Allred, J A Horowitz, D M Sullivan, Q Zhang, F Sekiguchi, G L Woods, M C Hoffmann, H Nojiri, J Takeda, J Kono. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Optics Express, 2016, 24(26): 30328–30337
https://doi.org/10.1364/OE.24.030328 pmid: 28059309
42 T Makihara, K Hayashida, G T II Noe, X Li, J Kono. Magnonic quantum simulator of antiresonant ultrastrong light-matter coupling. 2020, arXiv:2008:10721
43 Z Jiang, X C Zhang. Electro-optic measurement of THz field pulses with a chirped optical beam. Applied Physics Letters, 1998, 72(16): 1945–1947
https://doi.org/10.1063/1.121231
44 Z Jiang, X C Zhang. Single-shot spatiotemporal terahertz field imaging. Optics Letters, 1998, 23(14): 1114–1116
https://doi.org/10.1364/OL.23.001114 pmid: 18087445
45 N Matlis, G Plateau, J van Tilborg, W Leemans. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 23–27
https://doi.org/10.1364/JOSAB.28.000023
46 G T Noe II, Q Zhang, J Lee, E Kato, G L Woods, H Nojiri, J Kono. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics, 2014, 53(26): 5850–5855
https://doi.org/10.1364/AO.53.005850 pmid: 25321662
47 W Walecki, D Some, V Kozlov, A Nurmikko. Terahertz electromagnetic transients as probes of a two-dimensional electron gas. Applied Physics Letters, 1993, 63(13): 1809–1811
https://doi.org/10.1063/1.110670
48 D Some, A V Nurmikko. Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures. Applied Physics Letters, 1994, 65(26): 3377–3379
https://doi.org/10.1063/1.112397
49 D Some, A V Nurmikko. Coherent transient cyclotron emission from photoexcited GaAs. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(8): 5783–5786
https://doi.org/10.1103/PhysRevB.50.5783 pmid: 9976939
50 D Some, A V Nurmikko. Ultrafast photoexcited cyclotron emission: contributions from real and virtual excitations. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(20): R13295–R13298
https://doi.org/10.1103/PhysRevB.53.R13295 pmid: 9983171
51 S A Crooker. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments, 2002, 73(9): 3258–3264
https://doi.org/10.1063/1.1498904
52 X Wang, D J Hilton, L Ren, D M Mittleman, J Kono, J L Reno. Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas. Optics Letters, 2007, 32(13): 1845–1847
https://doi.org/10.1364/OL.32.001845 pmid: 17603589
53 H Sumikura, T Nagashima, H Kitahara, M Hangyo. Development of a cryogen-free terahertz time-domain magnetooptical measurement system. Japanese Journal of Applied Physics, 2007, 46(4A): 1739–1744
https://doi.org/10.1143/JJAP.46.1739
54 Y Ikebe, R Shimano. Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect. Applied Physics Letters, 2008, 92(1): 012111
https://doi.org/10.1063/1.2830697
55 G Scalari, C Maissen, D Turcinková, D Hagenmüller, S De Liberato, C Ciuti, C Reichl, D Schuh, W Wegscheider, M Beck, J Faist. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326
https://doi.org/10.1126/science.1216022 pmid: 22422976
56 D K George, A V Stier, C T Ellis, B D McCombe, J Černe, A G Markelz. Terahertz magneto-optical polarization modulation spectroscopy. Journal of the Optical Society of America. B, Optical Physics, 2012, 29(6): 1406–1412
https://doi.org/10.1364/JOSAB.29.001406
57 C D Wood, D Mistry, L H Li, J E Cunningham, E H Linfield, A G Davies. On-chip terahertz spectroscopic techniques for measuring mesoscopic quantum systems. Review of Scientific Instruments, 2013, 84(8): 085101
https://doi.org/10.1063/1.4816736 pmid: 24007101
58 L Wu, M Salehi, N Koirala, J Moon, S Oh, N P Armitage. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science, 2016, 354(6316): 1124–1127
https://doi.org/10.1126/science.aaf5541 pmid: 27934759
59 S Crooker. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments, 2002, 73(9): 3258–3264
https://doi.org/10.1063/1.1498904
60 X Wang, A A Belyanin, S A Crooker, D M Mittleman, J Kono. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nature Physics, 2010, 6(2): 126–130
https://doi.org/10.1038/nphys1480
61 T Arikawa, X Wang, D J Hilton, J L Reno, W Pan, J Kono. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(24): 241307
62 T Arikawa, X Wang, A A Belyanin, J Kono. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Optics Express, 2012, 20(17): 19484–19492
https://doi.org/10.1364/OE.20.019484 pmid: 23038591
63 Q Zhang, T Arikawa, E Kato, J L Reno, W Pan, J D Watson, M J Manfra, M A Zudov, M Tokman, M Erukhimova, A Belyanin, J Kono. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Physical Review Letters, 2014, 113(4): 047601
https://doi.org/10.1103/PhysRevLett.113.047601 pmid: 25105654
64 Q Zhang, M Lou, X Li, J L Reno, W Pan, J D Watson, M J Manfra, J Kono. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nature Physics, 2016, 12(11): 1005–1011
https://doi.org/10.1038/nphys3850
65 X Li, M Bamba, Q Zhang, S Fallahi, G C Gardner, W Gao, M Lou, K Yoshioka, M J Manfra, J Kono. Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nature Photonics, 2018, 12(6): 324–329
https://doi.org/10.1038/s41566-018-0153-0
66 X Li, M Bamba, N Yuan, Q Zhang, Y Zhao, M Xiang, K Xu, Z Jin, W Ren, G Ma, S Cao, D Turchinovich, J Kono. Observation of Dicke cooperativity in magnetic interactions. Science, 2018, 361(6404): 794–797
https://doi.org/10.1126/science.aat5162 pmid: 30139871
67 J Toth, M D Bird, S Bole, J W O’Reilly. Fabrication and assembly of the NHMFL 25 T resistive split magnet. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4301604
https://doi.org/10.1109/TASC.2011.2174594
68 J A Curtis, A D Burch, B Barman, A G Linn, L M McClintock, A L O’Beirne, M J Stiles, J L Reno, S A McGill, D Karaiskaj, D J Hilton. Broadband ultrafast terahertz spectroscopy in the 25 T Split Florida-Helix. Review of Scientific Instruments, 2018, 89(7): 073901
https://doi.org/10.1063/1.5023384 pmid: 30068119
69 J A Curtis, T Tokumoto, N K Nolan, L M McClintock, J G Cherian, S A McGill, D J Hilton. Ultrafast pump-probe spectroscopy in gallium arsenide at 25 T. Optics Letters, 2014, 39(19): 5772–5775
https://doi.org/10.1364/OL.39.005772 pmid: 25360981
70 J Paul, C E Stevens, R P Smith, P Dey, V Mapara, D Semenov, S A McGill, R A Kaindl, D J Hilton, D Karaiskaj. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. Review of Scientific Instruments, 2019, 90(6): 063901
https://doi.org/10.1063/1.5055891 pmid: 31255018
71 K Y Kim, A J Taylor, J H Glownia, G Rodriguez. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
https://doi.org/10.1038/nphoton.2008.153
72 M Kress, T Löffler, S Eden, M Thomson, H G Roskos. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122
https://doi.org/10.1364/OL.29.001120 pmid: 15182005
73 D Molter, G Torosyan, G Ballon, L Drigo, R Beigang, J Léotin. Step-scan time-domain terahertz magneto-spectroscopy. Optics Express, 2012, 20(6): 5993–6002
https://doi.org/10.1364/OE.20.005993 pmid: 22418476
74 G T Noe II, H Nojiri, J Lee, G L Woods, J Léotin, J Kono. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T. Review of Scientific Instruments, 2013, 84(12): 123906
https://doi.org/10.1063/1.4850675 pmid: 24387445
75 K W Post, A Legros, D G Rickel, J Singleton, R D McDonald, X He, I Bozovic, X Xu, X Shi, N P Armitage, S A Crooker. Observation of cyclotron resonance and measurement of the hole mass in optimally-doped La2−xSrxCuO4. 2020, arXiv:2006.09131
76 J Hebling, K L Yeh, M C Hoffmann, B Bartal, K A Nelson. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
https://doi.org/10.1364/JOSAB.25.0000B6
77 B D McCombe, R J Wagner. Intraband magneto-optical studies of semiconductors in the far-infrared. I. In: Marton L, ed. Advances in Electronics and Electron Physics, vol. 37. New York: Academic Press, 1975, 1–78
78 D M Mittleman. Sensing with Terahertz Radiation. Berlin: Springer, 2003
79 D N Basov, R D Averitt, D VanDerMarel, M Dressel, K Haule. Electrodynamics of correlated electron materials. Reviews of Modern Physics, 2011, 83(2): 471–541
https://doi.org/10.1103/RevModPhys.83.471
80 S L Dexheimer. Terahertz Spectroscopy: Principles and Applications. Boca Raton, Florida: CRC press, 2017
81 I Kézsmárki, D Szaller, S Bordács, V Kocsis, Y Tokunaga, Y Taguchi, H Murakawa, Y Tokura, H Engelkamp, T Rõõm, U Nagel. One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nature Communications, 2014, 5(1): 3203
https://doi.org/10.1038/ncomms4203 pmid: 24487724
82 S Bordács, I Kézsmárki, D Szaller, L Demkó, N Kida, H Murakawa, Y Onose, R Shimano, T Rõõm, U Nagel, S Miyahara, N Furukawa, Y Tokura. Chirality of matter shows up via spin excitations. Nature Physics, 2012, 8(10): 734–738
https://doi.org/10.1038/nphys2387
83 K Penc, J Romhányi, T Rõõm, U Nagel, A Antal, T Fehér, A Jánossy, H Engelkamp, H Murakawa, Y Tokura, D Szaller, S Bordács, I Kézsmárki. Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7. Physical Review Letters, 2012, 108(25): 257203
https://doi.org/10.1103/PhysRevLett.108.257203 pmid: 23004649
84 L Peedu, V Kocsis, D Szaller, J Viirok, U Nagel, T Rõõm, D G Farkas, S Bordács, D L Kamenskyi, U Zeitler, Y Tokunaga, Y Taguchi, Y Tokura, I Kézsmárki. Spin excitations of magnetoelectric LiNiPO4 in multiple magnetic phases. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(2): 024406
https://doi.org/10.1103/PhysRevB.100.024406
85 D Talbayev, A D LaForge, S A Trugman, N Hur, A J Taylor, R D Averitt, D N Basov. Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites. Physical Review Letters, 2008, 101(24): 247601
https://doi.org/10.1103/PhysRevLett.101.247601 pmid: 19113663
86 L Mihály, D Talbayev, L F Kiss, J Zhou, T Fehér, A Jánossy. Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(2): 024414
https://doi.org/10.1103/PhysRevB.69.024414
87 L Mihály, T Fehér, B Dóra, B Náfrádi, H Berger, L Forró. Spin resonance in the ordered magnetic state of Ni5(TeO3)4Cl2. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(17): 174403
https://doi.org/10.1103/PhysRevB.74.174403
88 I Kézsmárki, U Nagel, S Bordács, R S Fishman, J H Lee, H T Yi, S W Cheong, T Rõõm. Optical diode effect at spin-wave excitations of the room-temperature multiferroic BiFeO3. Physical Review Letters, 2015, 115(12): 127203
https://doi.org/10.1103/PhysRevLett.115.127203 pmid: 26431014
89 M Autore, H Engelkamp, F D’Apuzzo, A D Gaspare, P D Pietro, I L Vecchio, M Brahlek, N Koirala, S Oh, S Lupi. Observation of magnetoplasmons in Bi2Se3 topological insulator. ACS Photonics, 2015, 2(9): 1231–1235
https://doi.org/10.1021/acsphotonics.5b00036
90 Z Wang, S Reschke, D Hüvonen, S H Do, K Y Choi, M Gensch, U Nagel, T Rõõm, A Loidl. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Physical Review Letters, 2017, 119(22): 227202
https://doi.org/10.1103/PhysRevLett.119.227202 pmid: 29286817
91 A Sahasrabudhe, D A S Kaib, S Reschke, R German, T C Koethe, J Buhot, D Kamenskyi, C Hickey, P Becker, V Tsurkan, A Loidl, S H Do, K Y Choi, M Grüninger, S M Winter, Z Wang, R Valentí, P H M van Loosdrecht. High-field quantum disordered state in α-RuCl3: spin flips, bound states, and multi-particle continuum. Physical Review B: Condensed Matter and Materials Physics, 2020, 101(14): 140410
https://doi.org/10.1103/PhysRevB.101.140410
92 A D LaForge, A Frenzel, B C Pursley, T Lin, X Liu, J Shi, D N Basov. Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(12): 125120
https://doi.org/10.1103/PhysRevB.81.125120
93 A Schafgans, K W Post, A A Taskin, Y Ando, X L Qi, B C Chapler, D N Basov. Landau level spectroscopy of surface states in the topological insulator Bi0.91Sb0.09 via magneto-optics. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195440
https://doi.org/10.1103/PhysRevB.85.195440
94 A A Schafgans, A D LaForge, S V Dordevic, M M Qazilbash, W J Padilla, K S Burch, Z Q Li, S Komiya, Y Ando, D N Basov. Towards a two-dimensional superconducting state of La2−xSrx-CuO4 in a moderate external magnetic field. Physical Review Letters, 2010, 104(15): 157002
https://doi.org/10.1103/PhysRevLett.104.157002 pmid: 20482012
95 G Dresselhaus, A F Kip, C Kittel. Cyclotron resonance of electrons and holes in silicon and germanium crystals. Physical Review, 1955, 98(2): 368–384
https://doi.org/10.1103/PhysRev.98.368
96 B Lax, J G Mavroides. Cyclotron resonance. In: Seitz F, Turnbull D, eds. Solid State Physics, vol. 11. New York: Academic Press, 1960, 261–400
97 B D McCombe, R J Wagner. Intraband magneto-optical studies of semiconductors in the far-infrared. II. In: Marton L, ed. Advances in Electronics and Electron Physics, vol. 38. New York: Academic Press, 1975, 1–53
98 J Kono. Cyclotron resonance. In: Kaufmann E N, et al. (eds.) Methods in Materials Research. New York: John Wiley & Sons, 2001, Chap. 9b.2
99 J Kono, N Miura. Cyclotron resonance in high magnetic fields. In: Miura N, Herlach F, eds. High Magnetic Fields: Science and Technology, Volume III. Singapore: World Scientific, 2006, 61–90
100 D J Hilton, T Arikawa, J Kono. Cyclotron resonance. In: Kaufmann E N, ed. Characterization of Materials, 2nd edition. New York: John Wiley & Sons, Inc., 2012, 1–15
101 X Wang, D J Hilton, J L Reno, D M Mittleman, J Kono. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases. Optics Express, 2010, 18(12): 12354–12361
https://doi.org/10.1364/OE.18.012354 pmid: 20588361
102 R H Dicke. Coherence in spontaneous radiation processes. Physical Review, 1954, 93(1): 99–110
https://doi.org/10.1103/PhysRev.93.99
103 N Miura, H Yokoi, J Kono, S Sasaki. High field cyclotron resonance and the electron effective masses in AlAs. Solid State Communications, 1991, 79(12): 1039–1042
https://doi.org/10.1016/0038-1098(91)90006-H
104 J Kono, N Miura, S Takeyama, H Yokoi, N Fujimori, Y Nishibayashi, T Nakajima, K Tsuji, M Yamanaka. Observation of cyclotron resonance in low-mobility semiconductors using pulsed ultra-high magnetic fields. Physica B, Condensed Matter, 1993, 184(1–4): 178–183
https://doi.org/10.1016/0921-4526(93)90345-7
105 J Kono, S Takeyama, T Takamasu, N Miura, N Fujimori, Y Nishibayashi, T Nakajima, K Tsuji. High-field cyclotron resonance and valence-band structure in semiconducting diamond. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(15): 10917–10925
https://doi.org/10.1103/PhysRevB.48.10917 pmid: 10007392
106 J Kono, S Takeyama, H Yokoi, N Miura, M Yamanaka, M Shinohara, K Ikoma. High-field cyclotron resonance and impurity transition in n-type and p-type 3C-SiC at magnetic fields up to 175 T. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(15): 10909–10916
https://doi.org/10.1103/PhysRevB.48.10909 pmid: 10007391
107 W Knap, S Contreras, H Alause, C Skierbiszewski, J Camassel, M Dyakonov, J L Robert, J Yang, Q Chen, M Asif Khan, M L Sadowski, S Huant, F H Yang, M Goiran, J Leotin, M S Shur. Cyclotron resonance and quantum hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface. Applied Physics Letters, 1997, 70(16): 2123–2125
https://doi.org/10.1063/1.118967
108 Y Wang, R Kaplan, H K Ng, K Doverspike, D K Gaskill, T Ikedo, I Akasaki, H Amono. Magneto-optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance. Journal of Applied Physics, 1996, 79(10): 8007–8010
https://doi.org/10.1063/1.362351
109 B Cheng, P Taylor, P Folkes, C Rong, N P Armitage. Magnetoterahertz response and Faraday rotation from massive dirac fermions in the topological crystalline insulator Pb0.5Sn0.5Te. Physical Review Letters, 2019, 122(9): 097401
https://doi.org/10.1103/PhysRevLett.122.097401 pmid: 30932532
110 C D Jeffries. Electron-hole condensation in semiconductors: electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties. Science, 1975, 189(4207): 955–964
https://doi.org/10.1126/science.189.4207.955 pmid: 17789144
111 Q Zhang, Y Wang, W Gao, Z Long, J D Watson, M J Manfra, A Belyanin, J Kono. Stability of high-density two-dimensional excitons against a Mott transition in high magnetic fields probed by coherent terahertz spectroscopy. Physical Review Letters, 2016, 117(20): 207402
https://doi.org/10.1103/PhysRevLett.117.207402 pmid: 27886470
112 X Li, K Yoshioka, Q Zhang, N Marquez Peraca, F Katsutani, W Gao, G T II Noe, J D Watson, M J Manfra, I Katayama, J Takeda, J Kono. Observation of terahertz gain in two-dimensional magnetoexcitons. 2020, arXiv:2004.11459
113 M Hangyo, M Tani, T Nagashima. Terahertz time-domain spectroscopy of solids: a review. International Journal of Infrared and Millimeter Waves, 2005, 26(12): 1661–1690
https://doi.org/10.1007/s10762-005-0288-1
114 K von Klitzing, G Dorda, M Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 1980, 45(6): 494–497
https://doi.org/10.1103/PhysRevLett.45.494
115 Y Ikebe, T Morimoto, R Masutomi, T Okamoto, H Aoki, R Shimano. Optical Hall effect in the integer quantum Hall regime. Physical Review Letters, 2010, 104(25): 256802
https://doi.org/10.1103/PhysRevLett.104.256802 pmid: 20867407
116 R Shimano, G Yumoto, J Y Yoo, R Matsunaga, S Tanabe, H Hibino, T Morimoto, H Aoki. Quantum Faraday and Kerr rotations in graphene. Nature Communications, 2013, 4(1): 1841
https://doi.org/10.1038/ncomms2866 pmid: 23673626
117 M Fiebig. Revival of the magnetoelectric effect. Journal of Physics D, Applied Physics, 2005, 38(8): R123–R152
https://doi.org/10.1088/0022-3727/38/8/R01
118 S Yu, C Dhanasekhar, V Adyam, S Deckoff-Jones, M K L Man, J Madéo, E L Wong, T Harada, M B Murali Krishna, K M Dani, D Talbayev. Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo4O7. Physical Review B, 2017, 96(9): 094421
https://doi.org/10.1103/PhysRevB.96.094421
119 N P, Armitage L. Wu On the matter of topological insulators as magnetoelectrics. SciPost Physics, 2019, 6: 046
120 A M Essin, J E Moore, D Vanderbilt. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Physical Review Letters, 2009, 102(14): 146805
https://doi.org/10.1103/PhysRevLett.102.146805 pmid: 19392469
121 J Maciejko, X L Qi, H D Drew, S C Zhang. Topological quantization in units of the fine structure constant. Physical Review Letters, 2010, 105(16): 166803
https://doi.org/10.1103/PhysRevLett.105.166803 pmid: 21230994
122 T Morimoto, A Furusaki, N Nagaosa. Topological magnetoelectric effects in thin films of topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(8): 085113
https://doi.org/10.1103/PhysRevB.92.085113
123 X L Qi, T L Hughes, S C Zhang. Topological field theory of time-reversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(19): 195424
https://doi.org/10.1103/PhysRevB.78.195424
124 W K Tse, A H MacDonald. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Physical Review Letters, 2010, 105(5): 057401
https://doi.org/10.1103/PhysRevLett.105.057401 pmid: 20867952
125 W K Tse, A H MacDonald. Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(20): 205327
https://doi.org/10.1103/PhysRevB.84.205327
126 J Wang, B Lian, X L Qi, S C Zhang. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(8): 081107
https://doi.org/10.1103/PhysRevB.92.081107
127 D Zhang, M Shi, T Zhu, D Xing, H Zhang, J Wang. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Physical Review Letters, 2019, 122(20): 206401
https://doi.org/10.1103/PhysRevLett.122.206401 pmid: 31172761
128 F Wilczek. Two applications of axion electrodynamics. Physical Review Letters, 1987, 58(18): 1799–1802
https://doi.org/10.1103/PhysRevLett.58.1799 pmid: 10034541
129 J N Hancock, J L van Mechelen, A B Kuzmenko, D van der Marel, C Brüne, E G Novik, G V Astakhov, H Buhmann, L W Molenkamp. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Physical Review Letters, 2011, 107(13): 136803
https://doi.org/10.1103/PhysRevLett.107.136803 pmid: 22026887
130 G S Jenkins, A B Sushkov, D C Schmadel, N P Butch, P Syers, J Paglione, H D Drew. Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(12): 125120
https://doi.org/10.1103/PhysRevB.82.125120
131 R Valdés Aguilar, A V Stier, W Liu, L S Bilbro, D K George, N Bansal, L Wu, J Cerne, A G Markelz, S Oh, N P Armitage. Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. Physical Review Letters, 2012, 108(8): 087403
https://doi.org/10.1103/PhysRevLett.108.087403 pmid: 22463570
132 L Wu, W K Tse, M Brahlek, C M Morris, R V Aguilar, N Koirala, S Oh, N P Armitage. High-resolution Faraday rotation and electron-phonon coupling in surface states of the bulk-insulating topological insulator Cu0.02Bi2Se3. Physical Review Letters, 2015, 115(21): 217602
https://doi.org/10.1103/PhysRevLett.115.217602 pmid: 26636873
133 V Dziom, A Shuvaev, A Pimenov, G V Astakhov, C Ames, K Bendias, J Böttcher, G Tkachov, E M Hankiewicz, C Brüne, H Buhmann, L W Molenkamp. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nature Communications, 2017, 8(1): 15197
https://doi.org/10.1038/ncomms15197 pmid: 28504268
134 X Li, K Yoshioka, M Xie, G T Noe, W Lee, N Marquez Peraca, W Gao, T Hagiwara, Ø S Handegård, L W Nien, T Nagao, M Kitajima, H Nojiri, C K Shih, A H MacDonald, I Katayama, J Takeda, G A Fiete, J Kono. Terahertz Faraday and Kerr rotation spectroscopy of Bi1−xSbx films in high magnetic fields up to 30 Tesla. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(11): 115145
https://doi.org/10.1103/PhysRevB.100.115145
135 K N Okada, Y Takahashi, M Mogi, R Yoshimi, A Tsukazaki, K S Takahashi, N Ogawa, M Kawasaki, Y Tokura. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nature Communications, 2016, 7(1): 12245
https://doi.org/10.1038/ncomms12245 pmid: 27436710
136 C M Morris, R Valdés Aguilar, A Ghosh, S M Koohpayeh, J Krizan, R J Cava, O Tchernyshyov, T M McQueen, N P Armitage. Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb2O6 investigated by high-resolution time-domain terahertz spectroscopy. Physical Review Letters, 2014, 112(13): 137403
https://doi.org/10.1103/PhysRevLett.112.137403 pmid: 24745454
137 A Little, L Wu, P Lampen-Kelley, A Banerjee, S Patankar, D Rees, C A Bridges, J Q Yan, D Mandrus, S E Nagler, J Orenstein. Antiferromagnetic resonance and terahertz continuum in α-RuCl3. Physical Review Letters, 2017, 119(22): 227201
https://doi.org/10.1103/PhysRevLett.119.227201 pmid: 29286790
138 L Wu, A Little, E E Aldape, D Rees, E Thewalt, P Lampen-Kelley, A Banerjee, C A Bridges, J Q Yan, D Boone, S Patankar, D Goldhaber-Gordon, D Mandrus, S E Nagler, E Altman, J Orenstein. Field evolution of magnons in α-RuCl3 by high-resolution polarized terahertz spectroscopy. Physical Review. B, 2018, 98(9): 094425
https://doi.org/10.1103/PhysRevB.98.094425
139 I O Ozel, C A Belvin, E Baldini, I Kimchi, S Do, K Y Choi, N Gedik. Magnetic field-dependent low-energy magnon dynamics in α-RuCl3. Physical Review. B, 2019, 100(8): 085108
https://doi.org/10.1103/PhysRevB.100.085108
140 L Shi, Y Q Liu, T Lin, M Y Zhang, S J Zhang, L Wang, Y G Shi, T Dong, N L Wang. Field-induced magnon excitation and in-gap absorption in the Kitaev candidate RuCl3. Physical Review B: Condensed Matter and Materials Physics, 2018, 98(9): 094414
https://doi.org/10.1103/PhysRevB.98.094414
141 S Yu, B Gao, J W Kim, S W Cheong, M K L Man, J Madéo, K M Dani, D Talbayev. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Physical Review Letters, 2018, 120(3): 037601
https://doi.org/10.1103/PhysRevLett.120.037601 pmid: 29400514
142 P Forn-Díaz, L Lamata, E Rico, J Kono, E Solano. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005
https://doi.org/10.1103/RevModPhys.91.025005
143 A F Kockum, A Miranowicz, S De Liberato, S Savasta, F Nori. Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(1): 19–40
https://doi.org/10.1038/s42254-018-0006-2
144 D Hagenmüller, S De Liberato, C Ciuti. Ultra-strong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(23): 235303
https://doi.org/10.1103/PhysRevB.81.235303
145 G Herrmann. Resonance and high frequency susceptibility in canted antiferromagnetic substances. Journal of Physics and Chemistry of Solids, 1963, 24(5): 597–606
https://doi.org/10.1016/S0022-3697(63)80001-3
146 M Artoni, J L Birman. Polaritonsqueezing: theory and proposed experiment. Quantum Optics: Journal of the European Optical Society Part B, 1989, 1(2): 91–97
https://doi.org/10.1088/0954-8998/1/2/002
147 P Schwendimann, A Quattropani. Nonclassical properties of polariton states. Europhysics Letters, 1992, 17(4): 355–358
https://doi.org/10.1209/0295-5075/17/4/013
148 C Ciuti, G Bastard, I Carusotto. Quantumvacuum properties of the intersubband cavity polariton field. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(11): 115303
https://doi.org/10.1103/PhysRevB.72.115303
[1] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[2] Honglei ZHAN,Fangli QIN,Wujun JIN,Li’na GE,Honglan LIU,Kun ZHAO. Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods[J]. Front. Optoelectron., 2015, 8(1): 57-61.
[3] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[4] Hui ZHAO, Kun ZHAO, Lu TIAN, Qing MIAO, Hao NI. Optical property of biodiesel and its base stock in terahertz region[J]. Front Optoelec, 2012, 5(2): 214-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed