Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 187-200    https://doi.org/10.1007/s12200-021-1124-5
REVIEW ARTICLE
A review of dielectric optical metasurfaces for spatial differentiation and edge detection
Lei WAN1,2,3,4(), Danping PAN1, Tianhua FENG1,3(), Weiping LIU1,4, Alexander A. POTAPOV3,5
1. Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
3. JNU-IREE RAS Joint Laboratory of Information Techniques and Fractal Signal Processing, Jinan University, Guangzhou 510632, China
4. Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
5. Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
 Download: PDF(5403 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology. With the development of dielectric metasurfaces of different geometries and resonance mechanisms, diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures. This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first- and second-order spatial differentiators realized via the Green’s function approach. The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer functions of metasurfaces for different incident wavevectors and polarizations. To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition, edge detection is described to illustrate the practicability of the device. As an application example, experimental demonstrations of edge detection for different biological cells and a flower mold are discussed, in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations. The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.

Keywords dielectric metasurfaces      spatial differentiator      edge detection      optical transfer function     
Corresponding Author(s): Lei WAN,Tianhua FENG   
Just Accepted Date: 08 January 2021   Online First Date: 05 February 2021    Issue Date: 14 July 2021
 Cite this article:   
Lei WAN,Danping PAN,Tianhua FENG, et al. A review of dielectric optical metasurfaces for spatial differentiation and edge detection[J]. Front. Optoelectron., 2021, 14(2): 187-200.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1124-5
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/187
Fig.1  Basic principle of spatial differentiation and edge detection with metamaterials and metasurfaces. (a) Fourier information of the input signal can be obtained by a block with the Fourier transform (FT) function. After passing through the metasurface, the output signal can be obtained with the inverse Fourier transform (IFT) operation. (b) Graded index (GRIN) metamaterials can be employed to realize the FT and IFT. Reprinted with permission from Ref. [51]. Copyright 2013, The Optical Society of America. (c) Practical realization of the configuration. Reprinted with permission from Ref. [6]. Copyright 2014, American Association for the Advancement of Science
Fig.2  (a) Schematic of an isotropic second-order spatial differentiator realized by a photonic crystal slab and a separate dielectric slab. (b) Optical transfer functions (OTFs) of the device for the s wave, (c) p wave, and (d) unpolarized light. (e) One-dimensional (1D) OTF as a function of the wavevector and the corresponding quadratic fitting. (f) Morphologies of the incident Stanford emblem and slot patterns (left column) and the corresponding edge images (right column). Reproduced with permission from Ref. [53]. Copyright 2018, The Optical Society of America
Fig.3  (a) Schematic of the second-order spatial differentiator based on nonlocal metasurfaces consisting of split-ring resonators. (b) Evolution of transmission curves of the metasurface-based spatial differentiator with an increasing incident angle from 0° to 45°. (c) Output results of an ideal second-order differentiation operation and of the nonlocal metasurface corresponding to a sinusoidal function input. (d) Two-dimensional (2D) OTF of the differentiator as a function of incident angle q. (e) Results of edge detection corresponding to x-polarized wave illumination and (f) y-polarized wave illumination. Reproduced with permission from Ref. [36]. Copyright 2018, The Physical Society of America
Fig.4  (a) Schematic of the first-order spatial differentiator based on the reflective dielectric metasurface. (b) Magnetic field profiles at the x-z and x-y planes, respectively. (c) 1D OTF of the first-order spatial differentiator corresponding to changes of reflection amplitude and phase for the transverse-magnetic (TM) polarization light incidence. (d) Output intensity curve of the metasurface and the theoretically calculated results corresponding to the input Gaussian signal. (e) Incident image consisting of “ZJU” letters. (f) Reflected edge detection image corresponding to (e). Reproduced with permission from Ref. [46]. Copyright 2020, John Wiley & Sons Inc
Fig.5  (a) Unit cell of the second-order spatial differentiator based on the hole dielectric metasurface. (b) Fano transmission curves of the spatial differentiator as functions of an incident angle from 0° to 25°. 2D OTFs of device corresponding to (c) s-polarized and (d) p-polarized wave incidence. The output result of edge detection of (e) a 2D input image based on the second-order spatial differentiator for x-polarized light illumination. Reproduced with permission from Ref. [62]. Copyright 2020, The Chemical Society of America
Fig.6  (a) Schematic of the second-order spatial differentiator consisting of a silicon nanodisk metasurface. (b) Scattered power of the electric and magnetic dipole resonances as functions of wavelength for different incident angles from 0° to 25°. 2D OTFs of the device corresponding to the (c) s-polarized wave and (d) p-polarized wave incidence. The output images for edge detection for (e) x-polarized and (f) unpolarized light illumination. Reproduced with permission from Ref. [48]. Copyright 2020, The Optical Society of America
Fig.7  (a) Schematic of a second-order spatial differentiator consisting of a silicon nanorod array, and the corresponding scanning electron microscope (SEM) image. (b) Measurement results and fitted parabolic curve of the 1D OTF as a function of numerical aperture (NA). (c) Edge detection images using a resolution test chart with the differentiator under unpolarized light illumination of 1120 nm. Optical pathway configurations corresponding to the differentiators integrated in the front of (d) an objective lens, in the front of (e) a commercial charge-coupled device camera, and in the back of (f) a metalens. Target edge images of (g), (h) a biological cell and (i) a plastic flower mold with a 2D spatial differentiator corresponding to the three types of optical pathway configurations. Reproduced with permission from Ref. [47]. Copyright 2020, The Nature Publishing Group
1 M Gudmundsson, E A El-Kwae, M R Kabuka. Edge detection in medical images using a genetic algorithm. IEEE Transactions on Medical Imaging, 1998, 17(3): 469–474
https://doi.org/10.1109/42.712136 pmid: 9735910
2 J Chen, J Li, D Pan, Q Zhu, Z Mao. Edge-guided multiscale segmentation of satellite multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4513–4520
https://doi.org/10.1109/TGRS.2012.2194502
3 T M Hoang, S H Nam, K R Park. Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 109817–109832
https://doi.org/10.1109/ACCESS.2019.2933598
4 D R Solli, B Jalali. Analog optical computing. Nature Photonics, 2015, 9(11): 704–706
https://doi.org/10.1038/nphoton.2015.208
5 J W Goodman. Introduction to Fourier Optics. Englewood: Roberts & Company Publishers, 2005
6 A Silva, F Monticone, G Castaldi, V Galdi, A Alù, N Engheta. Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160–163
https://doi.org/10.1126/science.1242818 pmid: 24408430
7 J B Pendry, A J Holden, D J Robbins, J W Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
https://doi.org/10.1109/22.798002
8 D R Smith, D C Vier, T Koschny, C M Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617
https://doi.org/10.1103/PhysRevE.71.036617 pmid: 15903615
9 C Zhang, S Divitt, Q Fan, W Zhu, A Agrawal, Y Lu, T Xu, H J Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
https://doi.org/10.1038/s41377-020-0287-y pmid: 32284857
10 S Divitt, W Zhu, C Zhang, H J Lezec, A Agrawal. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 2019, 364(6443): 890–894
https://doi.org/10.1126/science.aav9632 pmid: 31048550
11 C Zhang, C Pfeiffer, T Jang, V Ray, M Junda, P Uprety, N Podraza, A Grbic, L J Guo. Breaking Malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser & Photonics Reviews, 2016, 10(5): 791–798
https://doi.org/10.1002/lpor.201500328
12 N Yu, F Capasso. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
https://doi.org/10.1038/nmat3839 pmid: 24452357
13 H H Hsiao, C H Chu, D P Tsai. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064
https://doi.org/10.1002/smtd.201600064
14 A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009
https://doi.org/10.1126/science.1232009 pmid: 23493714
15 S M Kamali, E Arbabi, A Arbabi, A Faraon. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7(6): 1041–1068
https://doi.org/10.1515/nanoph-2017-0129
16 L Zhang, S Mei, K Huang, C W Qiu. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, 4(6): 818–833
https://doi.org/10.1002/adom.201500690
17 X G Luo. Subwavelength optical engineering with metasurface waves. Advanced Optical Materials, 2018, 6(7): 1701201
https://doi.org/10.1002/adom.201701201
18 A Arbabi, Y Horie, M Bagheri, A Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
https://doi.org/10.1038/nnano.2015.186 pmid: 26322944
19 D Lin, P Fan, E Hasman, M L Brongersma. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
https://doi.org/10.1126/science.1253213 pmid: 25035488
20 M Khorasaninejad, W T Chen, R C Devlin, J Oh, A Y Zhu, F Capasso. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
https://doi.org/10.1126/science.aaf6644 pmid: 27257251
21 W T Chen, A Y Zhu, V Sanjeev, M Khorasaninejad, Z Shi, E Lee, F Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220–226
https://doi.org/10.1038/s41565-017-0034-6 pmid: 29292382
22 Y Deng, X Wang, Z Gong, K Dong, S Lou, N Pégard, K B Tom, F Yang, Z You, L Waller, J Yao. All-silicon broadband ultraviolet metasurfaces. Advanced Materials, 2018, 30(38): 1802632
https://doi.org/10.1002/adma.201802632 pmid: 30095179
23 M Henstridge, C Pfeiffer, D Wang, A Boltasseva, V M Shalaev, A Grbic, R Merlin. Accelerating light with metasurfaces. Optica, 2018, 5(6): 678–681
https://doi.org/10.1364/OPTICA.5.000678
24 L Wang, S Kruk, H Tang, T Li, I Kravchenko, D N Neshev, Y S Kivshar. Grayscale transparent metasurface holograms. Optica, 2016, 3(12): 1504–1505
https://doi.org/10.1364/OPTICA.3.001504
25 B Wang, F Dong, D Yang, Z Song, L Xu, W Chu, Q Gong, Y Li. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 2017, 4(11): 1368–1371
https://doi.org/10.1364/OPTICA.4.001368
26 L Huang, S Zhang, T Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 2018, 7(6): 1169–1190
https://doi.org/10.1515/nanoph-2017-0118
27 J P Balthasar Mueller, N A Rubin, R C Devlin, B Groever, F Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
https://doi.org/10.1103/PhysRevLett.118.113901 pmid: 28368630
28 K Wang, J G Titchener, S S Kruk, L Xu, H P Chung, M Parry, I I Kravchenko, Y H Chen, A S Solntsev, Y S Kivshar, D N Neshev, A A Sukhorukov. Quantum metasurface for multiphoton interference and state reconstruction. Science, 2018, 361(6407): 1104–1108
https://doi.org/10.1126/science.aat8196 pmid: 30213910
29 T Phan, D Sell, E W Wang, S Doshay, K Edee, J Yang, J A Fan. High-efficiency, large-area, topology-optimized metasurfaces. Light, Science & Applications, 2019, 8(1): 48
https://doi.org/10.1038/s41377-019-0159-5 pmid: 31149333
30 M Decker, I Staude, M Falkner, J Dominguez, D N Neshev, I Brener, T Pertsch, Y S Kivshar. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820
https://doi.org/10.1002/adom.201400584
31 C Pfeiffer, A Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401
https://doi.org/10.1103/PhysRevLett.110.197401 pmid: 23705738
32 S M Kamali, E Arbabi, A Arbabi, Y Horie, M Faraji-Dana, A Faraon. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Physical Review X, 2017, 7(4): 041056
https://doi.org/10.1103/PhysRevX.7.041056
33 A Pors, M G Nielsen, S I Bozhevolnyi. Analog computing using reflective plasmonic metasurfaces. Nano Letters, 2015, 15(1): 791–797
https://doi.org/10.1021/nl5047297 pmid: 25521830
34 H Chen, D An, Z Li, X Zhao. Performing differential operation with a silver dendritic metasurface at visible wavelengths. Optics Express, 2017, 25(22): 26417–26426
https://doi.org/10.1364/OE.25.026417 pmid: 29092132
35 W Wu, W Jiang, J Yang, S Gong, Y Ma. Multilayered analog optical differentiating device: performance analysis on structural parameters. Optics Letters, 2017, 42(24): 5270–5273
https://doi.org/10.1364/OL.42.005270 pmid: 29240190
36 H Kwon, D Sounas, A Cordaro, A Polman, A Alù. Nonlocal metasurfaces for optical signal processing. Physical Review Letters, 2018, 121(17): 173004
https://doi.org/10.1103/PhysRevLett.121.173004 pmid: 30411907
37 W Zhang, C Qu, X Zhang. Solving constant-coefficient differential equations with dielectric metamaterials. Journal of Optics, 2016, 18(7): 075102
https://doi.org/10.1088/2040-8978/18/7/075102
38 S Abdollahramezani, A Chizari, A E Dorche, M V Jamali, J A Salehi. Dielectric metasurfaces solve differential and integro-differential equations. Optics Letters, 2017, 42(7): 1197–1200
https://doi.org/10.1364/OL.42.001197 pmid: 28362728
39 T Zhu, Y Zhou, Y Lou, H Ye, M Qiu, Z Ruan, S Fan. Plasmonic computing of spatial differentiation. Nature Communications, 2017, 8(1): 15391
https://doi.org/10.1038/ncomms15391 pmid: 28524882
40 J Zhou, X Liu, G Fu, G Liu, P Tang, W Yuan, X Zhan, Z Liu. High-performance plasmonic oblique sensors for the detection of ions. Nanotechnology, 2020, 31(28): 285501
https://doi.org/10.1088/1361-6528/ab8329 pmid: 32209748
41 L Shi, J Shang, Z Liu, Y Li, G Fu, X Liu, P Pan, H Luo, G Liu. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology, 2020, 31(46): 465501
https://doi.org/10.1088/1361-6528/abad60 pmid: 32764189
42 Z Liu, G Liu, G Fu, X Liu, Z Huang, G Gu. All-metal meta-surfaces for narrowband light absorption and high performance sensing. Journal of Physics D, Applied Physics, 2016, 49(44): 445104
https://doi.org/10.1088/0022-3727/49/44/445104
43 Z Liu, G Fu, X Liu, Y Liu, L Tang, Z Liu, G Liu. High-quality multispectral bio-sensing with asymmetric all-dielectric meta-materials. Journal of Physics D, Applied Physics, 2017, 50(16): 165106
https://doi.org/10.1088/1361-6463/aa6384
44 Z Liu, G Liu, X Liu, S Huang, Y Wang, P Pan, M Liu. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology, 2015, 26(23): 235702
https://doi.org/10.1088/0957-4484/26/23/235702 pmid: 25987526
45 J Zhou, H Qian, C F Chen, J Zhao, G Li, Q Wu, H Luo, S Wen, Z Liu. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140
https://doi.org/10.1073/pnas.1820636116 pmid: 31101711
46 Y Zhou, W Wu, R Chen, W Chen, R Chen, Y Ma. Analog optical spatial differentiators based on dielectric metasurfaces. Advanced Optical Materials, 2020, 8(4): 1901523
https://doi.org/10.1002/adom.201901523
47 Y Zhou, H Zheng, I I Kravchenko, J Valentine. Flat optics for image differentiation. Nature Photonics, 2020, 14(5): 316–323
https://doi.org/10.1038/s41566-020-0591-3
48 L Wan, D Pan, S Yang, W Zhang, A A Potapov, X Wu, W Liu, T Feng, Z Li. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Optics Letters, 2020, 45(7): 2070–2073
https://doi.org/10.1364/OL.386986 pmid: 32236070
49 C M Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
https://doi.org/10.1038/nphoton.2011.154
50 N Yu, P Genevet, M A Kats, F Aieta, J P Tetienne, F Capasso, Z Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
51 M Farmahini-Farahani, J Cheng, H Mosallaei. Metasurfaces nanoantennas for light processing. Journal of the Optical Society of America B, Optical Physics, 2013, 30(9): 2365–2370
https://doi.org/10.1364/JOSAB.30.002365
52 A Chizari, S Abdollahramezani, M V Jamali, J A Salehi. Analog optical computing based on a dielectric meta-reflect array. Optics Letters, 2016, 41(15): 3451–3454
https://doi.org/10.1364/OL.41.003451 pmid: 27472591
53 C Guo, M Xiao, M Minkov, Y Shi, S Fan. Photonic crystal slab Laplace operator for image differentiation. Optica, 2018, 5(3): 251–256
https://doi.org/10.1364/OPTICA.5.000251
54 S Fan, J D Joannopoulos. Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002, 65(23): 235112
https://doi.org/10.1103/PhysRevB.65.235112
55 M F Limonov, M V Rybin, A N Poddubny, Y S Kivshar. Fano resonances in photonics. Nature Photonics, 2017, 11(9): 543–554
https://doi.org/10.1038/nphoton.2017.142
56 A I Kuznetsov, A E Miroshnichenko, M L Brongersma, Y S Kivshar, B Luk’yanchuk. Optically resonant dielectric nanostructures. Science, 2016, 354(6314): aag2472
https://doi.org/10.1126/science.aag2472 pmid: 27856851
57 S He, J Zhou, S Chen, W Shu, H Luo, S Wen. Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light. APL Photonics, 2020, 5(3): 036105
https://doi.org/10.1063/1.5144953
58 C Guo, M Xiao, M Minkov, Y Shi, S Fan. Isotropic wavevector domain image filters by a photonic crystal slab device. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(10): 1685–1691
https://doi.org/10.1364/JOSAA.35.001685 pmid: 30462088
59 A Saba, M R Tavakol, P Karimi-Khoozani, A Khavasi. Two-dimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technology Letters, 2018, 30(9): 853–856
https://doi.org/10.1109/LPT.2018.2820045
60 A Cordaro, H Kwon, D Sounas, A F Koenderink, A Alù, A Polman. High-index dielectric matesurfaces performing mathematical operations. Nano Letters, 2019, 19(12): 8418–8423
https://doi.org/10.1021/acs.nanolett.9b02477 pmid: 31675241
61 S Abdollahramezani, O Hemmatyar, A Adibi. Meta-optics for spatial optical analog computing. Nanophotonics, 2020, 9(13): 4075–4095
https://doi.org/10.1515/nanoph-2020-0285
62 H Kwon, A Cordaro, D Sounas, A Polman, A Alù. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics, 2020, 7(7): 1799–1805
https://doi.org/10.1021/acsphotonics.0c00473
63 A Roberts, D E Gómez, T J Davis. Optical image processing with metasurface dark modes. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(9): 1575–1584
https://doi.org/10.1364/JOSAA.35.001575 pmid: 30183013
64 T J Davis, F Eftekhari, D E Gómez, A Roberts. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Physical Review Letters, 2019, 123(1): 013901
https://doi.org/10.1103/PhysRevLett.123.013901 pmid: 31386393
65 T Zhu, Y Lou, Y Zhou, J Zhang, J Huang, Y Li, H Luo, S Wen, S Zhu, Q Gong, M Qiu, Z Ruan. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection. Physical Review Applied, 2019, 11(3): 034043
https://doi.org/10.1103/PhysRevApplied.11.034043
66 S He, J Zhou, S Chen, W Shu, H Luo, S Wen. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Optics Letters, 2020, 45(4): 877–880
https://doi.org/10.1364/OL.386224 pmid: 32058494
67 H Wang, C Guo, Z Zhao, S Fan. Compact incoherent image differentiation with nanophotonic structures. ACS Photonics, 2020, 7(2): 338–343
https://doi.org/10.1021/acsphotonics.9b01465
68 J Zhou, H Qian, J Zhao, M Tang, Q Wu, M Lei, H Luo, S Wen, S Chen, Z Liu. Two-dimensional optical spatial differentiation and high-contrast imaging. National Science Review, 2020, doi:10.1093/nsr/nwaa176
https://doi.org/10.1093/nsr/nwaa176
69 P Karimi, A Khavasi, S S Mousavi Khaleghi. Fundamental limit for gain and resolution in anglog optical edge detection. Optics Express, 2020, 28(2): 898–911
https://doi.org/10.1364/OE.379492 pmid: 32121810
70 P Huo, C Zhang, W Zhu, M Liu, S Zhang, S Zhang, L Chen, H J Lezec, A Agrawal, Y Lu, T Xu. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
https://doi.org/10.1021/acs.nanolett.0c00471 pmid: 32155076
71 X Zou, G Zheng, Q Yuan, W Zang, R Chen, T Li, L Li, S Wang, Z Wang, S Zhu. Imaging based on metalens. PhotoniX, 2020, 1(2): 4540
[1] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[2] Yuzhang CHEN, Kecheng YANG, Xiaohui ZHANG, Min XIA, Wei LI. Modelling of beam propagation and its applications for underwater imaging[J]. Front Optoelec Chin, 2011, 4(4): 398-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed