Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 459-472    https://doi.org/10.1007/s12200-021-1133-4
REVIEW ARTICLE
Self-trapped exciton emission in inorganic copper(I) metal halides
Boyu ZHANG, Xian WU, Shuxing ZHOU, Guijie LIANG, Qingsong HU()
Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
 Download: PDF(6943 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The broad emission and high photoluminescence quantum yield of self-trapped exciton (STE) radiative recombination emitters make them an ideal solution for single-substrate, white, solid-state lighting sources. Unlike impurities and defects in semiconductors, the formation of STEs requires a lattice distortion, along with strong electron–phonon coupling, in low electron-dimensional materials. The photoluminescence of inorganic copper(I) metal halides with low electron-dimensionality has been found to be the result of STEs. These materials were of significant interest because of their lead-free, all-inorganic structures, and high luminous efficiencies. In this paper, we summarize the luminescence characteristics of zero- and one-dimensional inorganic copper(I) metal halides with STEs to provide an overview of future research opportunities.

Keywords self-trapped exciton (STE)      low electron-dimensional      inorganic copper(I) metal halides     
Corresponding Author(s): Qingsong HU   
Just Accepted Date: 07 February 2021   Online First Date: 26 March 2021    Issue Date: 06 December 2021
 Cite this article:   
Boyu ZHANG,Xian WU,Shuxing ZHOU, et al. Self-trapped exciton emission in inorganic copper(I) metal halides[J]. Front. Optoelectron., 2021, 14(4): 459-472.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1133-4
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/459
Fig.1  (a) Crystal structure of Cs3Cu2I5 (top), and Cs3Cu2Cl5 (middle). Two adjacent copper halide polyhedra (bottom) of Cs3Cu2I5 (left) and Cs3Cu2Br5 (right) along one of the crystal directions [25]. (b) X-ray diffraction (XRD) (left) and unit cell volumes (right) of different Cs3Cu2X5 (X= Cl, Br, I) compounds [18]. (c) PLE (left) and PL (right) spectra of different Cs3Cu2X5 [18]. (d) Images of the powders of different Cs3Cu2X5 (X= Cl, Br, I) compounds under ultraviolet irradiation [15,26]. (e) Integrated PL intensity vs. excitation power for Cs3Cu2Cl5 [26]. (f) Integrated PL intensity vs. excitation power for Cs3Cu2Br5−nIn(n = 0, 1.25, 2.50, 3.75) [15]. (g) Integrated PL intensity vs. excitation power for Cs3Cu2I5 [27]
material PLE /nm PL/nm t/µs PLQY /% Eg /eV FWHM /nm DS/nm Ref.
Cs3Cu2Cl5 259 527 135.97 48.7 4.43 242 [17]
Cs3Cu2Cl5 ~283 516 78 ~235 [18]
Cs3Cu2Cl5 310 525 60 102 215 [25]
Cs3Cu2Cl5 320 515 112.4 91.3 3.60 91 195 [26]
Cs3Cu2(Cl0.75Br0.25)5 ~275 516 10 ~185 [18]
Cs3Cu2(Cl0.5Br0.5)5 ~272 470 3.6 ~195 [18]
Cs3Cu2(Cl0.25Br0.75)5 ~273 464 3.3 ~190 [18]
Cs3Cu2Br5 298 455 50.1 4.51 75 157 [15]
Cs3Cu2Br5 269 461 14.12 16.9 4.33 [17]
Cs3Cu2Br5 293 460 10 73 167 [25]
Cs3Cu2Br5 290 461 17.3 3.72 82 171 [26]
Cs3Cu2Br3.75I1.25 293 456 53.8 85 164 [15]
Cs3Cu2Br2.5I2.5 294 453 55.2 89 159 [15]
Cs3Cu2Br1.25I3.75 300 448 60.4 93 148 [15]
Cs3Cu2l5 290 445 91.2 175 155 [12]
Cs3Cu2l5 309 443 98.7 99 135 [15]
Cs3Cu2l5 262, 285 445 1.56 29.2 4.40 158 [17]
Cs3Cu2l5 310 440 62 80 130 [25]
Cs3Cu2l5 305 445 49.2 4.06 77 140 [26]
Cs3Cu2l5 286 444 1.12 4.1 79 [28]
Cs3Cu2l5 316 437 95 [29]
Tab.1  PLE, PL, lifetime (t), PLQY, bandgap (Eg), FWHM, and Stokes shift (DS) of Cs3Cu2X5 (X= Cl, Br, I) reported in the literature
Fig.2  Projected density states for pristine structures of (a) Cs3Cu2Cl5, (b) Cs3Cu2Br5, and (c) Cs3Cu2I5 [26]. (d) Configuration coordinate diagram for the excitation, relaxation, and emission in Cs3Cu2Br5 [15]. (e) Configuration coordinate diagram for the formation of STEs in Cs3Cu2Cl5 [26]
Fig.3  (a) Crystal structure of CsCu2I3 [31]. (b) CsCu2I3 structure viewed along the c-axis [31]. (c) Crystal structure of Rb2CuBr3 [20]. (d) Rb2CuBr3 structure viewed along the a-axis [20]. (e) Crystal structure of Cs5Cu3Cl6I2 [21]. (f) [Cu2I5]3− unit in Cs5Cu3Cl6I2 (Pnma) (left) and the [Cu2Cl5]3− unit in Cs5Cu3Cl6I2 (Cmcm) (right) [21]. (g) PL micrographs of CsCu2I3 crystal under pressures from 1 atm up to 16.0 GPa [22]. Schematic illustrations of the trapping and detrapping processes of the excitons in (h) phase I and (i) phase II. FE, free exciton state; GS, ground state; ST, self-trapped state; EST, self-trapping energy; EPL, photoluminescence energy; Ed, lattice deformation energy [22]
material PLE /nm PL/nm t/µs PLQY /% Eg/eV FWHM/nm DS/nm Ref.
CsCu2Cl3 319 527 0.0138 48.0 4.29 102 208 [19]
CsCu2Cl1.5Br1.5 340 587 0.0151 0.37 200 247 [19]
CsCu2Br3 319 533 0.018 18.3 3.94 106 214 [19]
CsCu2Br1.5I1.5 335 584 0.0266 0.38 128 249 [19]
CsCu2I3 347 568 0.0636 15.7 3.78 75 245 [14]
CsCu2I3 331 575 6 120 244 [25]
CsCu2I3 321 561 0.104 3.6 [28]
CsCu2I3 334 576 0.062 3.23 3.93 126 242 [19]
Rb2CuCl3 300 395 12.21 85 4.49 52 93 [13]
Rb2CuBr3 276 385 41.4 64 3.51 54 85 [13]
Rb2CuBr3 300 385 41.4 98.6 3.51 54 85 [20]
Rb2CuBr3 302 390 20 54 88 [25]
K2CuCl3 291 392 96.58 54 101 [16]
K2CuBr3 296 388 55 54 92 [16]
Cs5Cu3Cl6I2 462 40 95 95 191 [21]
Tab.2  PLE, PL, t, PLQY, Eg, FWHM, and DS of CsCu2X3 (X= Cl, Br, I), A2CuX3 (A= Rb, K; X= Br, Cl), and Cs5Cu3Cl6I2 from the literatures
Fig.4  (a) Partial charge density contours of both hole and electron wave functions for STE1 and STE2 in CsCu2Cl3 and STE3 in CsCu2I3, viewed from the two directions (along the b and a axes, respectively) perpendicular to the 1D chain [35]. (b) Femtosecond UV-vis transient absorption broadband spectra of a CsCu2I3 thin film [36]. Each curve in the figure represents the absorption curve of the CsCu2I3 film at a certain moment, and the vertical axis represents the change of absorption at a certain moment compared to the time zero. (c) Species-associated spectra were obtained from the kinetic modeling. Species: FE* and FE (hot and cooled free excitons, respectively), STE** and STE* (hot and partially cooled STEs, respectively). GS is the “ground-state” absorption (black solid line) [36]. (d) Semilogarithmic contour plots of experimental transient absorption spectra (right) and fitted transient absorption spectra (left), the latter with additional representations of the spectral evolution for each species [36]. (e) Energy level scheme summarizing the states, transitions, and central dynamic processes in CsCu2I3 thin films. Energetics of STE1, STE2, and STE3 are taken from Refs. [35,36]
Fig.5  (a) Photo of a white LED driven under a bias voltage of 6 V. The inset shows photographs of Cs3Cu2I5, a Cs3Cu2I5 + CsCu2I3 mixture, and CsCu2I3 (from top to bottom) under UV light irradiation at 305 nm [37]. (b) PL spectrum of the Cs3Cu2I5 + CsCu2I3 mixture (with weight ratio of 1:16 or molar ratio of 1:8). Inset shows a photograph of the mixture under 254 nm light irradiation [25]. (c) Schematic structure of the CsCu2I3 based LEDs [38]. (d) Voltage-current density-luminance curves of the yellow emission LEDs [38]. (e) Schematic structure of the Cs3Cu2I5 NCs based LEDs [39]. (f) Voltage-current density-luminance curves of the blue emission device [39]. (g) Schematic structure of the CsCu2I3@Cs3Cu2I5 based LEDs [40]. (h) Voltage-current density-luminance curves of the white emission device [40]
Fig.6  (a) Schematic illustration of the Cs3Cu2I5/GaN heterojunction device [42]. (b) I?V curves of the photodetector tested in the dark and under different light irradiation intensities (320 nm) [42]. (c) Responsivity and specific detectivity of the photodetector versus light intensity [42]. (d) Rising and falling edges for estimating the rise time (tr) and fall time (tf) of the photodetector [42]. (e) Schematic illustration of the polarization-sensitive photodetector based on 1D CsCu2I3 nanowires (NWs) [23]. (f) Anisotropic photocurrent response under 325 nm light excitation described via a 2D color map (photocurrent is denoted by the color bar, with voltage as the x-axis and polarization angle as the y-axis) [23]. (g) Photocurrent response of a 1D CsCu2I3 NW device under incident light with different polarization angles [23]. (h) and (i) Optical microscopy images of CsCu2I3 single crystals with rod-shaped morphology [44]. Comparison of photoelectric properties between (110) and (010) crystal planes of CsCu2I3 single crystals: (j) I–t curves and (k) I–V curves in dark and under 350 nm illumination at a 3 V bias [44]
Fig.7  (a) Schematic of the prototype projection system for X-ray imaging, and photographs of an X-ray image of a universal board and a ball-point pen [47]. (b) Illustration of Cs3Cu2I5 precursor solution as a fluorescent ink [48]. (c) Schematic illustration of the setup for recording deep UV images and the image-sensing profile of HFUT under 265, 365, and 405 nm light excitation [43]
1 Z Guo, J Li, R Pan, J Cheng, R Chen, T He. All-inorganic copper(I)-based ternary metal halides: promising materials toward optoelectronics. Nanoscale, 2020, 12(29): 15560–15576
https://doi.org/10.1039/D0NR04220J pmid: 32692791
2 J Tang, D Li. Halide perovskites: from materials to optoelectronic devices. Frontiers of Optoelectronics, 2020, 13(3): 191–192
https://doi.org/10.1007/s12200-020-1092-1
3 L Wang, P Chen, P S Kuttipillai, I King, R Staples, K Sun, R R Lunt. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Applied Materials & Interfaces, 2019, 11(35): 32076–32083
https://doi.org/10.1021/acsami.9b05592 pmid: 31268658
4 J Chen, Z Luo, Y Fu, X Wang, K J Czech, S Shen, L Guo, J C Wright, A Pan, S Jin. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X= Br, I) nanowires. ACS Energy Letters, 2019, 4(5): 1045–1052
https://doi.org/10.1021/acsenergylett.9b00543
5 A B Wong, Y Bekenstein, J Kang, C S Kley, D Kim, N A Gibson, D Zhang, Y Yu, S R Leone, L W Wang, A P Alivisatos, P Yang. Strongly quantum confined colloidal cesium tin iodide perovskite nanoplates: lessons for reducing defect density and improving stability. Nano Letters, 2018, 18(3): 2060–2066
https://doi.org/10.1021/acs.nanolett.8b00077 pmid: 29504759
6 L J Chen. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Advances, 2018, 8(33): 18396–18399
https://doi.org/10.1039/C8RA01150H
7 M Leng, Y Yang, K Zeng, Z Chen, Z Tan, S Li, J Li, B Xu, D Li, M P Hautzinger, Y Fu, T Zhai, L Xu, G Niu, S Jin, J Tang. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446
https://doi.org/10.1002/adfm.201704446
8 J Luo, X Wang, S Li, J Liu, Y Guo, G Niu, L Yao, Y Fu, L Gao, Q Dong, C Zhao, M Leng, F Ma, W Liang, L Wang, S Jin, J Han, L Zhang, J Etheridge, J Wang, Y Yan, E H Sargent, J Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
https://doi.org/10.1038/s41586-018-0691-0 pmid: 30405238
9 J Li, H Wang, D Li. Self-trapped excitons in two-dimensional perovskites. Frontiers of Optoelectronics, 2020, 13(3): 225–234
https://doi.org/10.1007/s12200-020-1051-x
10 S Li, J Luo, J Liu, J Tang. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007
https://doi.org/10.1021/acs.jpclett.8b03604 pmid: 30946586
11 M D Smith, H I Karunadasa. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619–627
https://doi.org/10.1021/acs.accounts.7b00433 pmid: 29461806
12 T Jun, K Sim, S Iimura, M Sasase, H Kamioka, J Kim, H Hosono. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials, 2018, 30(43): e1804547
https://doi.org/10.1002/adma.201804547 pmid: 30216587
13 T D Creason, A Yangui, R Roccanova, A Strom, M H Du, B Saparov. Rb2CuX3 (X= Cl, Br): 1D all-inorganic copper halides with ultrabright blue emission and up-conversion photoluminescence. Advanced Optical Materials, 2020, 8(2): 1901338
https://doi.org/10.1002/adom.201901338
14 R Lin, Q Guo, Q Zhu, Y Zhu, W Zheng, F Huang. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Advanced Materials, 2019, 31(46): e1905079
https://doi.org/10.1002/adma.201905079 pmid: 31583772
15 R Roccanova, A Yangui, H Nhalil, H Shi, M H Du, B Saparov. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5−xIx (0≤x≤5). ACS Applied Electronic Materials, 2019, 1(3): 269–274
https://doi.org/10.1021/acsaelm.9b00015
16 T D Creason, T M McWhorter, Z Bell, M H Du, B Saparov. K2CuX3 (X= Cl, Br): all-inorganic lead-free blue emitters with near-unity photoluminescence quantum yield. Chemistry of Materials, 2020, 32(14): 6197–6205
https://doi.org/10.1021/acs.chemmater.0c02098
17 Z Luo, Q Li, L Zhang, X Wu, L Tan, C Zou, Y Liu, Z Quan. 0D Cs3Cu2X5 (X= I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties. Small, 2020, 16(3): e1905226
https://doi.org/10.1002/smll.201905226 pmid: 31833672
18 P Sebastia-Luna, J Navarro-Alapont, M Sessolo, F Palazon, H J Bolink. Solvent-free synthesis and thin-film deposition of cesium copper halides with bright blue photoluminescence. Chemistry of Materials, 2019, 31(24): 10205–10210
https://doi.org/10.1021/acs.chemmater.9b03898
19 R Roccanova, A Yangui, G Seo, T D Creason, Y Wu, D Y Kim, M H Du, B Saparov. Bright luminescence from nontoxic CsCu2X3 (X= Cl, Br, I). ACS Materials Letters, 2019, 1(4): 459–465
20 B Yang, L Yin, G Niu, J H Yuan, K H Xue, Z Tan, X S Miao, M Niu, X Du, H Song, E Lifshitz, J Tang. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 2019, 31(44): e1904711
https://doi.org/10.1002/adma.201904711 pmid: 31531905
21 J Li, T Inoshita, T Ying, A Ooishi, J Kim, H Hosono. A highly efficient and stable blue-emitting Cs5Cu3Cl6I2 with a 1D chain structure. Advanced Materials, 2020, 32(37): e2002945
https://doi.org/10.1002/adma.202002945 pmid: 32761681
22 Q Li, Z Chen, B Yang, L Tan, B Xu, J Han, Y Zhao, J Tang, Z Quan. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units. Journal of the American Chemical Society, 2020, 142(4): 1786–1791
https://doi.org/10.1021/jacs.9b13419 pmid: 31922738
23 Y Li, Z Shi, L Wang, Y Chen, W Liang, D Wu, X Li, Y Zhang, C Shan, X Fang. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Materials Horizons, 2020, 7(6): 1613–1622
https://doi.org/10.1039/D0MH00250J
24 Z Guo, J Li, Y Gao, J Cheng, W Zhang, R Pan, R Chen, T He. Multiphoton absorption in low-dimensional cesium copper iodide single crystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2020, 8(47): 16923–16929
https://doi.org/10.1039/D0TC04061D
25 G K Grandhi, N S M Viswanath, H B Cho, J H Han, S M Kim, S Choi, W B Im. Mechanochemistry as a green route: synthesis, thermal stability, and postsynthetic reversible phase transformation of highly-luminescent cesium copper halides. Journal of Physical Chemistry Letters, 2020, 11(18): 7723–7729
https://doi.org/10.1021/acs.jpclett.0c02384 pmid: 32870687
26 L Lian, M Zheng, P Zhang, Z Zheng, K Du, W Lei, J Gao, G Niu, D Zhang, T Zhai, S Jin, J Tang, X Zhang, J Zhang. Photophysics in Cs3Cu2X5 (X= Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization. Chemistry of Materials, 2020, 32(8): 3462–3468
https://doi.org/10.1021/acs.chemmater.9b05321
27 P Cheng, L Sun, L Feng, S Yang, Y Yang, D Zheng, Y Zhao, Y Sang, R Zhang, D Wei, W Deng, K Han. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angewandte Chemie International Edition, 2019, 58(45): 16087–16091
https://doi.org/10.1002/anie.201909129 pmid: 31456333
28 P Vashishtha, G V Nutan, B E. Griffith, Y Fang, D Giovanni, M Jagadeeswararao, T C Sum, N Mathews, S G Mhaisalkar, J V Hanna, T White. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chemistry of Materials, 2019, 31(21): 9003–9011
https://doi.org/10.1021/acs.chemmater.9b03250
29 S Liu, Y Yue, X Zhang, C Wang, G Yang, D Zhu. A controllable and reversible phase transformation between all-inorganic perovskites for white light emitting diodes. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2020, 8(25): 8374–8379
https://doi.org/10.1039/D0TC01519A
30 R T Williams, K S Song. The self-trapped exciton. Journal of Physics and Chemistry of Solids, 1990, 51(7): 679–716
https://doi.org/10.1016/0022-3697(90)90144-5
31 J Yang, W Kang, Z Liu, M Pi, L B Luo, C Li, H Lin, Z Luo, J Du, M Zhou, X Tang. High-performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability. Journal of Physical Chemistry Letters, 2020, 11(16): 6880–6886
https://doi.org/10.1021/acs.jpclett.0c01832 pmid: 32627555
32 Z Ma, Z Liu, S Lu, L Wang, X Feng, D Yang, K Wang, G Xiao, L Zhang, S A T Redfern, B Zou. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nature Communications, 2018, 9(1): 4506
https://doi.org/10.1038/s41467-018-06840-8 pmid: 30374042
33 Y Shi, Z Ma, D Zhao, Y Chen, Y Cao, K Wang, G Xiao, B Zou. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. Journal of the American Chemical Society, 2019, 141(16): 6504–6508
https://doi.org/10.1021/jacs.9b02568 pmid: 30969767
34 Y Wang, X Lü, W Yang, T Wen, L Yang, X Ren, L Wang, Z Lin, Y Zhao. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. Journal of the American Chemical Society, 2015, 137(34): 11144–11149
https://doi.org/10.1021/jacs.5b06346 pmid: 26284441
35 M H Du. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides. ACS Energy Letters, 2020, 5(2): 464–469
https://doi.org/10.1021/acsenergylett.9b02688
36 R Kentsch, M Morgenroth, M Scholz, K Xu, J Schmedt Auf der Günne, T Lenzer, K Oum. Direct observation of the exciton self-trapped process in CsCu2I3 thin films. Journal of Physical Chemistry Letters, 2020, 11(11): 4286–4291
https://doi.org/10.1021/acs.jpclett.0c01130 pmid: 32407630
37 S Fang, Y Wang, H Li, F Fang, K Jiang, Z Liu, H Li, Y Shi. Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(14): 4895–4901
https://doi.org/10.1039/D0TC00015A
38 Z Ma, Z Shi, C Qin, M Cui, D Yang, X Wang, L Wang, X Ji, X Chen, J Sun, D Wu, Y Zhang, X J Li, L Zhang, C Shan. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano, 2020, 14(4): 4475–4486
https://doi.org/10.1021/acsnano.9b10148 pmid: 32167288
39 L Wang, Z Shi, Z Ma, D Yang, F Zhang, X Ji, M Wang, X Chen, G Na, S Chen, D Wu, Y Zhang, X Li, L Zhang, C Shan. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Letters, 2020, 20(5): 3568–3576
https://doi.org/10.1021/acs.nanolett.0c00513 pmid: 32243171
40 Z Ma, Z Shi, D Yang, Y Li, F Zhang, L Wang, X Chen, D Wu, Y Tian, Y Zhang, L Zhang, X Li, C Shan. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Advanced Materials, 2021, 33(2): e2001367
https://doi.org/10.1002/adma.202001367 pmid: 33225543
41 R Lin, Q Zhu, Q Guo, Y Zhu, W Zheng, F Huang. Dual self-trapped exciton emission with ultrahigh photoluminescence quantum yield in CsCu2I3 and Cs3Cu2I5 perovskite single crystals. Journal of Physical Chemistry C, 2020, 124(37): 20469–20476
https://doi.org/10.1021/acs.jpcc.0c07435
42 Y Li, Z Shi, W Liang, L Wang, S Li, F Zhang, Z Ma, Y Wang, Y Tian, D Wu, X Li, Y Zhang, C Shan, X Fang. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7(2): 530–540
https://doi.org/10.1039/C9MH01371G
43 Z X Zhang, C Li, Y Lu, X W Tong, F X Liang, X Y Zhao, D Wu, C Xie, L B Luo. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. Journal of Physical Chemistry Letters, 2019, 10(18): 5343–5350
https://doi.org/10.1021/acs.jpclett.9b02390 pmid: 31452370
44 Z Li, Z Li, Z Shi, X Fang. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1d electronic structure. Advanced Functional Materials, 2020, 30(28): 2002634
https://doi.org/10.1002/adfm.202002634
45 X Zhao, G Niu, J Zhu, B Yang, J H Yuan, S Li, W Gao, Q Hu, L Yin, K H Xue, E Lifshitz, X Miao, J Tang. All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator. Journal of Physical Chemistry Letters, 2020, 11(5): 1873–1880
https://doi.org/10.1021/acs.jpclett.0c00161 pmid: 32040318
46 W Gao, G Niu, L Yin, B Yang, J H Yuan, D Zhang, K H Xue, X Miao, Q Hu, X Du, J Tang. One-dimensional all-inorganic K2CuBr3 with violet emission as efficient X-ray scintillators. ACS Applied Electronic Materials, 2020, 2(7): 2242–2249
https://doi.org/10.1021/acsaelm.0c00414
47 L Lian, M Zheng, W Zhang, L Yin, X Du, P Zhang, X Zhang, J Gao, D Zhang, L Gao, G Niu, H Song, R Chen, X Lan, J Tang, J Zhang. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Advanced Science, 2020, 7(11): 2000195
https://doi.org/10.1002/advs.202000195 pmid: 32537419
48 F Zhang, Z Zhao, B Chen, H Zheng, L Huang, Y Liu, Y Wang, A L Rogach. Strongly emissive lead-free 0D Cs3Cu2I5 perovskites synthesized by a room temperature solvent evaporation crystallization for down-conversion light-emitting devices and fluorescent inks. Advanced Optical Materials, 2020, 8(8): 1901723
https://doi.org/10.1002/adom.201901723
49 F Zeng, Y Guo, W Hu, Y Tan, X Zhang, J Feng, X Tang. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Applied Materials & Interfaces, 2020, 12(20): 23094–23101
https://doi.org/10.1021/acsami.0c03106 pmid: 32336082
[1] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed