Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 473-481    https://doi.org/10.1007/s12200-021-1236-y
RESEARCH ARTICLE
Oxide perovskite Ba2AgIO6 wafers for X-ray detection
Longbo YANG, Jincong PANG, Zhifang TAN, Qi XIAO, Tong JIN, Jiajun LUO(), Guangda NIU, Jiang TANG
Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1570 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

X-ray detection is of great significance in biomedical, nondestructive, and scientific research. Lead halide perovskites have recently emerged as one of the most promising materials for direct X-ray detection. However, the lead toxicity remains a worrisome concern for further commercial application. Great efforts have been made to search for lead-free perovskites with similar optoelectronic properties. Here, we present a lead-free oxide double perovskite material Ba2AgIO6 for X-ray detection. The lead-free, all-inorganic nature, as well as the high density of Ba2AgIO6, promises excellent prospects in X-ray applications. By employing the hydrothermal method, we successfully synthesized highly crystalline Ba2AgIO6 powder with pure phase. Furthermore, we prepared Ba2AgIO6 wafers through isostatic pressure and built X-ray detectors with Au/Ba2AgIO6 wafer/Au photoconductive structure. The as-prepared X-ray detectors showed a sensitivity of 18.9 μC/(Gyair·cm2) at 5 V/mm, similar to commercial α-Se detectors showcasing their advantages for X-ray detection.

Keywords oxide double perovskite      lead-free      X-ray detection     
Corresponding Author(s): Jiajun LUO   
Online First Date: 11 October 2021    Issue Date: 06 December 2021
 Cite this article:   
Longbo YANG,Jincong PANG,Zhifang TAN, et al. Oxide perovskite Ba2AgIO6 wafers for X-ray detection[J]. Front. Optoelectron., 2021, 14(4): 473-481.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1236-y
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/473
Fig.1  (a) Absorption coefficients of Ba2AgIO6, Si, MAPbBr3, Cs2AgBiBr6, and CdTe from soft X-rays to gamma rays. (b) Attenuation efficiencies of Ba2AgIO6, Si, MAPbBr3, Cs2AgBiBr6, and CdTe at different thickness. (c) Crystal structure of Ba2AgIO6 and the fitted bandgap width (1.9 eV)
Fig.2  (a) X-ray diffraction (XRD) data of the powders synthesized by hydrothermal method and a low-temperature solution process (LTSP). (b) Photoluminescence spectrum of the powders synthesized by different methods. (c) Schematic of preparation of Ba2AgIO6 wafers by cold isostatic pressing
Fig.3  (a) Device structure of Ba2AgIO6 X-ray detector. (b) Response for devices prepared by hydrothermal method and mixed precipitation at 785 μGyair/s X-ray dose rate at 5 V bias. (c) Response for devices prepared by hydrothermal method from 5499 to 785 μGyair/s X-ray dose rate and 1 to 5 V bias. (d) X-ray sensitivity of devices prepared by hydrothermal method and mixed precipitation method at different bias voltages
Fig.4  (a) X-ray diffraction (XRD) data of Ba2AgIO6 powder exposed in air for different time. (b) X-ray sensitivity of Ba2AgIO6 X-ray detector exposed in air for different time
  Fig. S1 X-ray diffraction (XRD) data of AgIO4
  Fig. S2 (a) Scanning electron microscope (SEM) image of Ba2AgIO6 powder. (b) SEM image of Ba2AgIO6 wafer at 10 μm scalebar. (c) SEM image of Ba2AgIO6 wafer at 100 nm scalebar
Ag/% I/% Ba/%
sample 1 27.06 21.59 51.35
sample 2 27.12 24.57 48.31
sample 3 25.91 22.86 51.42
sample 4 23.32 24.18 52.49
  Table S1 X-ray fluorescence (XRF) data of Ba2AgIO6
  Fig. S3 Response for devices prepared by hydrothermal method from 5499 to 785 μGyair/s X-ray dose rate at 5 V bias
  Fig. S4 Air ionization response with the same probes’ position at 5499 and 4713.5 μGyair/s X-ray dose rate at 5 V bias
  Fig. S5 Photoconductive gain factor under different dose rates and electric fields
thickness/mm 0.5 1.0 2.0
X-ray sensitivity/(μC·Gyair·s−1·cm−2) 17.6 18.9 18.1
  Table S2 X-ray sensitivity of Ba2AgIO6 wafers at different thicknesses at 5 V/mm
1 M J Yaffe, J A Rowlands. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
https://doi.org/10.1088/0031-9155/42/1/001 pmid: 9015806
2 A Sakdinawat, D Attwood. Nanoscale X-ray imaging. Nature Photonics, 2010, 4(12): 840–848
https://doi.org/10.1038/nphoton.2010.267
3 Z Tan, J Pang, G Niu, J H Yuan, K H Xue, X Miao, W Tao, H Zhu, Z Li, H Zhao, X Du, J Tang. Tailoring the electron and hole dimensionality to achieve efficient and stable metal halide perovskite scintillators. Nanophotonics, 2021, 10(8): 2249–2256
https://doi.org/10.1515/nanoph-2020-0624
4 W Heiss, C Brabec. Perovskites target X-ray detection. Nature Photonics, 2016, 10(5): 288–289
https://doi.org/10.1038/nphoton.2016.54
5 S Yakunin, M Sytnyk, D Kriegner, S Shrestha, M Richter, G J Matt, H Azimi, C J Brabec, J Stangl, M V Kovalenko, W Heiss. Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9(7): 444–449
https://doi.org/10.1038/nphoton.2015.82 pmid: 28553368
6 W Wei, Y Zhang, Q Xu, H Wei, Y Fang, Q Wang, Y Deng, T Li, A Gruverman, L Cao, J Huang. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11(5): 315–321
https://doi.org/10.1038/nphoton.2017.43
7 S Shrestha, R Fischer, G J Matt, P Feldner, T Michel, A Osvet, I Levchuk, B Merle, S Golkar, H Chen, S F Tedde, O Schmidt, R Hock, M Rührig, M Göken, W Heiss, G Anton, C J Brabec. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 2017, 11(7): 436–440
https://doi.org/10.1038/nphoton.2017.94
8 Y Liu, Y Zhang, X Zhu, J Feng, I Spanopoulos, W Ke, Y He, X Ren, Z Yang, F Xiao, K Zhao, M Kanatzidis, S F Liu. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Advanced Materials, 2021, 33(8): e2006010
https://doi.org/10.1002/adma.202006010 pmid: 33475209
9 European Union. Directive 2011/65/EU of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. 2002
10 J Luo, S Li, H Wu, Y Zhou, Y Li, J Liu, J Li, K Li, F Yi, G Niu, J Tang. Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics, 2018, 5(2): 398–405
https://doi.org/10.1021/acsphotonics.7b00837
11 J Li, Z Tan, M Hu, C Chen, J Luo, S Li, L Gao, Z Xiao, G Niu, J Tang. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12(4): 352–364
https://doi.org/10.1007/s12200-019-0907-4
12 J Luo, X Wang, S Li, J Liu, Y Guo, G Niu, L Yao, Y Fu, L Gao, Q Dong, C Zhao, M Leng, F Ma, W Liang, L Wang, S Jin, J Han, L Zhang, J Etheridge, J Wang, Y Yan, E H Sargent, J Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
https://doi.org/10.1038/s41586-018-0691-0 pmid: 30405238
13 W Pan, H Wu, J Luo, Z Deng, C Ge, C Chen, X Jiang, W Yin, G Niu, L Zhu, L Yin, Y Zhou, Q Xie, X Ke, M Sui, J Tang. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
https://doi.org/10.1038/s41566-017-0012-4
14 G Volonakis, N Sakai, H J Snaith, F Giustino. Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. Journal of Physical Chemistry Letters, 2019, 10(8): 1722–1728
https://doi.org/10.1021/acs.jpclett.9b00193 pmid: 30920840
15 Y Yuan, J Huang. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 2016, 49(2): 286–293
https://doi.org/10.1021/acs.accounts.5b00420 pmid: 26820627
16 Y Shao, Y Fang, T Li, Q Wang, Q Dong, Y Deng, Y Yuan, H Wei, M Wang, A Gruverman, J Shield, J Huang. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy & Environmental Science, 2016, 9(5): 1752–1759
https://doi.org/10.1039/C6EE00413J
17 A Sultana, M M Wronski, K S Karim, J A Rowlands. Digital X-ray imaging using avalanche α-Se photoconductor. IEEE Sensors Journal, 2010, 10(2): 347–352
https://doi.org/10.1109/JSEN.2009.2034386
18 M J Berger, J H Hubbell, S M Seltzer, J Chang, J S Coursey, R Sukumar, D S Zucker, K Olsen. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013)
19 H Wei, Y Fang, P Mulligan, W Chuirazzi, H H Fang, C Wang, B R Ecker, Y Gao, M A Loi, L Cao, J Huang. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333–339
https://doi.org/10.1038/nphoton.2016.41
20 J E Toney, T E Schlesinger, R B James. Optimal bandgap variants of Cd1−xZnxTe for high-resolution X-ray and gamma-ray spectroscopy. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 428(1): 14–24
https://doi.org/10.1016/S0168-9002(98)01575-7
21 W Zheng, W Pang, G Meng. Hydrothermal synthesis and characterization of perovskite-type Ba2SbMO6 (M=In, Y, Nd) oxides. Materials Letters, 1998, 37(4–5): 276–280
https://doi.org/10.1016/S0167-577X(98)00105-0
22 S Tie, W Zhao, D Xin, M Zhang, J Long, Q Chen, X Zheng, J Zhu, W H Zhang. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Advanced Materials, 2020, 32(31): e2001981
https://doi.org/10.1002/adma.202001981 pmid: 32588518
23 Y C Kim, K H Kim, D Y Son, D N Jeong, J Y Seo, Y S Choi, I T Han, S Y Lee, N G Park. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87–91
https://doi.org/10.1038/nature24032 pmid: 28980632
24 J E Martin. Radiation Detection and Measurement. New York: Wiley, 1989
25 R Devanathan, L R Corrales, F Gao, W J Weber. Signal variance in gamma-ray detectors—a review. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(2): 637–649
https://doi.org/10.1016/j.nima.2006.05.085
26 B Fraboni, A Ciavatti, F Merlo, L Pasquini, A Cavallini, A Quaranta, A Bonfiglio, A Fraleoni-Morgera. Organic semiconducting single crystals as next generation of low-cost, room-temperature electrical X-ray detectors. Advanced Materials, 2012, 24(17): 2289–2293
https://doi.org/10.1002/adma.201200283 pmid: 22451192
27 W Pan, B Yang, G Niu, K H Xue, X Du, L Yin, M Zhang, H Wu, X S Miao, J Tang. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 2019, 31(44): e1904405
https://doi.org/10.1002/adma.201904405 pmid: 31523875
28 M Xia, J Yuan, G Niu, X Du, L Yin, W Pan, J Luo, Z Li, H Zhao, K Xue, X Miao, J Tang. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-Ray detectors with low detection limit and high stability. Advanced Functional Materials, 2020, 30(24): 1910648
https://doi.org/10.1002/adfm.201910648
29 G Konstantatos, M Badioli, L Gaudreau, J Osmond, M Bernechea, F P G de Arquer, F Gatti, F H L Koppens. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012, 7(6): 363–368
https://doi.org/10.1038/nnano.2012.60 pmid: 22562036
[1] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed