Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (4) : 352-364    https://doi.org/10.1007/s12200-019-0907-4
RESEARCH ARTICLE
Antimony doped Cs2SnCl6 with bright and stable emission
Jinghui LI1, Zhifang TAN2, Manchen HU1, Chao CHEN2, Jiajun LUO1, Shunran LI1, Liang GAO1, Zewen XIAO1, Guangda NIU1(), Jiang TANG2()
1. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(3339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4:Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.

Keywords perovskite      lead-free      antimony doping      orange-red emission     
Corresponding Author(s): Guangda NIU,Jiang TANG   
Just Accepted Date: 25 March 2019   Online First Date: 16 May 2019    Issue Date: 30 December 2019
 Cite this article:   
Jinghui LI,Zhifang TAN,Manchen HU, et al. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0907-4
https://academic.hep.com.cn/foe/EN/Y2019/V12/I4/352
Fig.1  (a) XRD patterns of Cs2SnCl6:xSb powders with representative Sb content. The inset is the crystal structure of vacancy ordered double perovskite Cs2SnCl6. Dark purple spheres: Cl; tawny spheres: Cs; gray spheres: Sn. (b) XPS survey spectrum for Cs2SnCl6:0.59%Sb. (c) Calculated polyhedron of the chemical potential region where Cs2SnCl6 is stable against possible competitive phases. (d) Calculated formation enthalpies (DH) of neutral Sbi and SbSn as a function of the chemical potentials (DmCs, DmSn), where (DmCs, DmSn) moves along the F-E-D-C-B-A-G-F lines in (c)
Fig.2  (a) Optical absorption spectrum of Cs2SnCl6:0.59%Sb, the insets show the images of Cs2SnCl6:0.59%Sb under the natural light (left) and UV irradiation (right). (b) Excitation and photoluminescence spectra of Cs2SnCl6:0.59%Sb
x lex/nm lem/nm FWHM/nm Stokes shift/nm PLQY
0 N/A N/A N/A N/A N/A
0.20% 365 601 101 236 25.9%
0.41% 364 601 102 237 28.3%
0.59% 365 602 101 237 37.0%
0.89% 365 604 102 239 32.0%
0.98% 366 602 100 236 21.9%
Tab.1  Photophysical properties of Cs2SnCl6:xSb at room temperature (x is the content of antimony; lex is the wavelength at the excitation maximum; lem is the wavelength at the emission maximum)
Fig.3  (a) Temperature-dependent photoluminescence spectra of Cs2SnCl6:0.59%Sb. (b) Schematic diagram of luminescence process in Cs2SnCl6:xSb. (c) Schematic of the potential energy curves of Cs2SnCl6:xSb in a configuration space. (d) PL decay curve of Cs2SnCl6:0.59%Sb bulk crystals (lex = 365 nm, lem = 602 nm). The red curve is a fit to the experimental data with a double exponential decay function. (e) Excitation spectra of PL monitored at different emission wavelengths. (f) Emission spectra of PL monitored at different excitation wavelengths
Fig.4  (a) TGA and DSC of Cs2SnCl6:0.59%Sb. (b) PL stability of Cs2SnCl6:0.59%Sb by illuminating with UV light (365 nm). The measurements were conducted in air without any encapsulation. (c) PL stability of Cs2SnCl6:0.59%Sb after immersed into deionized water for different durations
Fig.5  (a) Luminescence spectra from Cs2SnCl6:0.59%Sb-based LEDs with cold white emission and (inset) photo of an operating LED. (b) CIE coordinates and CCTs corresponding to white-LED device (white star) and Cs2SnCl6:0.59%Sb crystals (red triangle). (c) Emission spectra of white-LED device at different driving currents
feeding concentrations ICP-OES-determined concentrations
0.99% 0.20%
4.76% 0.41%
9.09% 0.59%
16.66% 0.89%
23.08% 0.98%
  Table S1 Feeding concentrations and ICP-OES-determined concentrations of Sb/(Sb+Sn)
  Fig. S1 High-resolution X-ray diffraction analysis and Rietveld refinements of Sb-doped Cs2SnCl6 with different content of antimony. The structural parameters and refinement statistics were included in Table S1
x a Rp/% Rwp/% χ2
0.00% 10.37371 4.91 6.95 4.63
0.20% 10.37373 5.31 8.09 6.55
0.41% 10.38144 5.26 8.00 6.27
0.59% 10.38175 4.51 6.51 4.10
0.89% 10.38232 4.77 6.97 4.75
0.98% 10.38246 4.78 6.79 4.53
  Table S2 Refined lattice parameters of Cs2SnCl6:xSb, x represent the Sb/(Sb+Sn) molar ratios determined by ICP-OES
  Fig. S2 High-resolution XPS spectra of Cs2SnCl6:0.59%Sb and peak fitting for (a) tin and (b) antimony, respectively
  Fig. S3 Optical absorption spectra of Sb-doped Cs2SnCl6
  Fig. S4 Temperature-dependent photoluminescence spectra and the corresponding Gaussian fitting results
  Fig. S5 Anti-water stability comparison among Cs2SnCl6:Sb3+, (C9NH20)2SbCl5 and CsPbBr3@Cs4PbBr6 (i.e., the core-shell structure of CsPbBr3-Cs4PbBr6). The latter two samples are reproduced from literature by ourselves
  Fig. S6 Air stability of Pb-free perovskites Cs2SnCl6:0.59%Sb
  Fig. S7 XRD pattern for Cs2SnCl6:0.59%Sb3+ sample after exposed to air for one week. The inverted triangles mark represent the X-Ray Diffraction peaks for SbOCl
  Fig. S8 Operational LED stability of Pb-free perovskites Cs2SnCl6:xSb
1 J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao, M K Nazeeruddin, M Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319
https://doi.org/10.1038/nature12340 pmid: 23842493
2 L Zhang, X Yang, Q Jiang, P Wang, Z Yin, X Zhang, H Tan, Y M Yang, M Wei, B R Sutherland, E H Sargent, J You. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8: 15640
https://doi.org/10.1038/ncomms15640 pmid: 28589960
3 H Cho, S H Jeong, M H Park, Y H Kim, C Wolf, C L Lee, J H Heo, A Sadhanala, N Myoung, S Yoo, S H Im, R H Friend, T W Lee. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225
https://doi.org/10.1126/science.aad1818 pmid: 26785482
4 Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith, R H Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
https://doi.org/10.1038/nnano.2014.149 pmid: 25086602
5 X Li, Y Wu, S Zhang, B Cai, Y Gu, J Song, H Zeng. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2584
https://doi.org/10.1002/adfm.201670096
6 H Zhang, X Wang, Q Liao, Z Xu, H Li, L Zheng, H Fu. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advanced Functional Materials, 2017, 27(7): 1604382
https://doi.org/10.1002/adfm.201604382
7 R Ge, F Qin, L Hu, S Xiong, Y Zhou. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Frontiers of Optoelectronics, 2018, 11(4): 360–366
https://doi.org/10.1007/s12200-018-0847-4
8 K Lin, J Xing, L N Quan, F P G de Arquer, X Gong, J Lu, L Xie, W Zhao, D Zhang, C Yan, W Li, X Liu, Y Lu, J Kirman, E H Sargent, Q Xiong, Z Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
https://doi.org/10.1038/s41586-018-0575-3 pmid: 30305741
9 Y Cao, N Wang, H Tian, J Guo, Y Wei, H Chen, Y Miao, W Zou, K Pan, Y He, H Cao, Y Ke, M Xu, Y Wang, M Yang, K Du, Z Fu, D Kong, D Dai, Y Jin, G Li, H Li, Q Peng, J Wang, W Huang. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253
https://doi.org/10.1038/s41586-018-0576-2 pmid: 30305742
10 S A Veldhuis, P P Boix, N Yantara, M Li, T C Sum, N Mathews, S G Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
https://doi.org/10.1002/adma.201600669 pmid: 27214091
11 I Lignos, S Stavrakis, G Nedelcu, L Protesescu, A J deMello, M V Kovalenko. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869–1877
https://doi.org/10.1021/acs.nanolett.5b04981 pmid: 26836149
12 J Song, J Li, L Xu, J Li, F Zhang, B Han, Q Shan, H Zeng. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Advanced Materials, 2018, 30(30): e1800764
https://doi.org/10.1002/adma.201800764 pmid: 29888521
13 L Protesescu, S Yakunin, M I Bodnarchuk, F Krieg, R Caputo, C H Hendon, R X Yang, A Walsh, M V Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696
https://doi.org/10.1021/nl5048779 pmid: 25633588
14 F Zhang, H Zhong, C Chen, X G Wu, X Hu, H Huang, J Han, B Zou, Y Dong. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533–4542
https://doi.org/10.1021/acsnano.5b01154 pmid: 25824283
15 W Pan, H Wu, J Luo, Z Deng, C Ge, C Chen, X Jiang, W Yin, G Niu, L Zhu, L Yin, Y Zhou, Q Xie, X Ke, M Sui, J Tang. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
https://doi.org/10.1038/s41566-017-0012-4
16 Y Wei, H Xiao, Z Xie, S Liang, S Liang, X Cai, S Huang, A A Al Kheraif, H S Jang, Z Cheng, J Lin. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Advanced Optical Materials, 2018, 6(11): 1701343
https://doi.org/10.1002/adom.201701343
17 S Huang, B Wang, Q Zhang, Z Li, A Shan, L Li. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals. Advanced Optical Materials, 2018, 6(6): 1701106
https://doi.org/10.1002/adom.201701106
18 S Yang, W Fu, Z Zhang, H Chen, C Li. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482
https://doi.org/10.1039/C7TA00366H
19 M Leng, Z Chen, Y Yang, Z Li, K Zeng, K Li, G Niu, Y He, Q Zhou, J Tang. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie, 2016, 55(48): 15012–15016
https://doi.org/10.1002/anie.201608160 pmid: 27791304
20 J Zhang, Y Yang, H Deng, U Farooq, X Yang, J Khan, J Tang, H Song. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11(9): 9294–9302
https://doi.org/10.1021/acsnano.7b04683 pmid: 28880532
21 M Leng, Y Yang, K Zeng, Z Chen, Z Tan, S Li, J Li, B Xu, D Li, M P Hautzinger, Y Fu, T Zhai, L Xu, G Niu, S Jin, J Tang. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446
https://doi.org/10.1002/adfm.201704446
22 M Leng, Y Yang, Z Chen, W Gao, J Zhang, G Niu, D Li, H Song, J Zhang, S Jin, J Tang. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083
https://doi.org/10.1021/acs.nanolett.8b03090 pmid: 30107746
23 C Zhou, H Lin, Y Tian, Z Yuan, R Clark, B Chen, L J van de Burgt, J C Wang, Y Zhou, K Hanson, Q J Meisner, J Neu, T Besara, T Siegrist, E Lambers, P Djurovich, B Ma. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586–593
https://doi.org/10.1039/C7SC04539E pmid: 29629122
24 C Zhou, M Worku, J Neu, H Lin, Y Tian, S Lee, Y Zhou, D Han, S Chen, A Hao, P I Djurovich, T Siegrist, M H Du, B Ma. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374–2378
https://doi.org/10.1021/acs.chemmater.8b00129
25 W Liu, Q Lin, H Li, K Wu, I Robel, J M Pietryga, V I Klimov. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. Journal of the American Chemical Society, 2016, 138(45): 14954–14961
https://doi.org/10.1021/jacs.6b08085 pmid: 27756131
26 Q Hu, Z Li, Z Tan, H Song, C Ge, G Niu, J Han, J Tang. Rare earth ion-doped CsPbBr3 nanocrystals. Advanced Optical Materials, 2018, 6(2): 1700864
https://doi.org/10.1002/adom.201700864
27 C Zhou, Y Tian, O Khabou, M Worku, Y Zhou, J Hurley, H Lin, B Ma. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions. ACS Applied Materials & Interfaces, 2017, 9(46): 40446–40451
https://doi.org/10.1021/acsami.7b12456 pmid: 29083158
28 Z Tan, J Li, C Zhang, Z Li, Q Hu, Z Xiao, T Kamiya, H Hosono, G Niu, E Lifshitz, Y Cheng, J Tang. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
https://doi.org/10.1002/adfm.201801131
29 D Costa, P Marcus. Electronic core levels of hydroxyls at the surface of chromia related to their XPS O 1s signature: a DFT+ U study. Surface Science, 2010, 604(11–12): 932–938
https://doi.org/10.1016/j.susc.2010.02.023
30 S M Hwang, J Kim, Y Kim, Y Kim. Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(46): 17946–17951
https://doi.org/10.1039/C6TA07838A
31 X Yang, J Ma, H Wang, Y Chai, R Yuan. Partially reduced Sb/Sb2O3@C spheres with enhanced electrochemical performance for lithium ion storage. Materials Chemistry and Physics, 2018, 213: 208–212
https://doi.org/10.1016/j.matchemphys.2018.04.027
32 A Ali, S K Hasanain, T Ali, M Sultan. Improvement of antimony sulfide photo bsorber performance by interface modification in Sb2S3-ZnO hybrid nanostructures. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 87: 20–26
https://doi.org/10.1016/j.physe.2016.11.002
33 P Yang, P Deng, Z Yin. Concentration quenching in Yb:YAG. Journal of Luminescence, 2002, 97(1): 51–54
https://doi.org/10.1016/S0022-2313(01)00426-4
34 E W J L Oomen, G J Dirksen, W M A Smit, G Blasse. On the luminescence of the Sb3+ ion in Cs2NaMBr6 (M=Sc,Y,La). Journal of Physics C. Solid State Physics, 1987, 20(8): 1161–1171
https://doi.org/10.1088/0022-3719/20/8/017
35 E W J L Oomen, W M A Smit, G Blasse. On the luminescence of Sb3+ in Cs2NaMCl6 (with M=Sc,Y,La): a model system for the study of trivalent s2 ions. Journal of Physics C. Solid State Physics, 1986, 19(17): 3263–3272
https://doi.org/10.1088/0022-3719/19/17/020
36 R Reisfeld, L Boehm, B Barnett. Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses. Journal of Solid State Chemistry, 1975, 15(2): 140–150
https://doi.org/10.1016/0022-4596(75)90237-6
37 G Zhou, X Jiang, J Zhao, M Molokeev, Z Lin, Q Liu, Z Xia. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A= K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Applied Materials & Interfaces, 2018, 10(29): 24648–24655
https://doi.org/10.1021/acsami.8b08129 pmid: 29969555
38 E W J L Oomen, G J Dirksen. Crystal growth and luminescence of Sb3+-doped Cs2 NaMCl6 (M= Sc, Y, La). Materials Research Bulletin, 1985, 20(4): 453–457
https://doi.org/10.1016/0025-5408(85)90013-3
39 G Blasse, B Grabmaier. Luminescent Materials. Berlin: Springer, 1994
40 M Kulbak, S Gupta, N Kedem, I Levine, T Bendikov, G Hodes, D Cahen. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172
https://doi.org/10.1021/acs.jpclett.5b02597 pmid: 26700466
[1] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[2] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[3] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[4] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[5] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
[6] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[7] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[8] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[9] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[10] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[11] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
[12] Bat-El COHEN,Lioz ETGAR. Parameters that control and influence the organo-metal halide perovskite crystallization and morphology[J]. Front. Optoelectron., 2016, 9(1): 44-52.
[13] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[14] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed