Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 272-281    https://doi.org/10.1007/s12200-020-1031-1
RESEARCH ARTICLE
Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells
Hangkai YING1, Yifan LIU1, Yuxi DOU1, Jibo ZHANG1, Zhenli WU1, Qi ZHANG2,3, Yi-Bing CHENG1,4, Jie ZHONG1()
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3. School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
4. Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
 Download: PDF(1571 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Organic–inorganic hybrid perovskite solar cells have generated wide interest due to the rapid development of their photovoltaic conversion efficiencies. However, the majority of the reported devices have been fabricated via spin coating with a device area of <1 cm2. In this study, we fabricated a wide-bandgap formamidinium lead bromide (FAPbBr3) film using a cost-effective, high-yielding doctor-blade-coating process. The effects of different surfactants, such as l-α-phosphatidylcholine, polyoxyethylene sorbitan monooleate, sodium lauryl sulfonate, and hexadecyl trimethyl ammonium bromide, were studied during the printing process. Accompanying the optimization of the blading temperature, crystal sizes of over 10 mm and large-area perovskite films of 5 cm × 5 cm were obtained using this method. The printed FAPbBr3 solar cells exhibited a short-circuit current density of 8.22 mA/cm2, an open-circuit voltage of 1.175 V, and an efficiency of 7.29%. Subsequently, we replaced the gold with silver nanowires as the top electrode to prepare a semitransparent perovskite solar cell with an average transmittance (400–800 nm) of 25.42%, achieving a high-power efficiency of 5.11%. This study demonstrates efficient doctor-blading printing for preparing large-area FAPbBr3 films that possess high potential for applications in building integrated photovoltaics.

Keywords semitransparent      printing      perovskite solar cell (PSC)      doctor blading      wide bandgap     
Corresponding Author(s): Jie ZHONG   
Just Accepted Date: 28 June 2020   Online First Date: 20 July 2020    Issue Date: 27 September 2020
 Cite this article:   
Hangkai YING,Yifan LIU,Yuxi DOU, et al. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1031-1
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/272
Fig.1  (a) Descriptive illustration of the blade-coating process. (b) Large-area semitransparent perovskite film with an area of 5 cm × 5 cm. (c) Device structure of a doctor-bladed FAPbBr3 solar cell
Fig.2  SEM images of the FAPbBr3 films fabricated via doctor blading (a) without surfactants and with (b) LP; (c) SLS; (d) CTAB; and (e) Tween surfactants. Optical microscopy images of the FAPbBr3 films fabricated via doctor blading (f) without surfactants and with (g) LP; (h) SLS; (i) CTAB; and (j) Tween surfactants
Fig.3  (a) J–V curves of PSCs with different surfactants; (b) EQE spectra of the best devices prepared using different surfactants; and the effects of the addition of different surfactants on the statistical J–V parameters of the doctor-blading-printed devices: (c) Jsc; (d) Voc; (e) FF; and (f) PCE
surfactant Voc/V Jsc/(mA·cm−2) FF PCE/%
CTAB 1.159 8.00 0.74 6.90
SLS 0.961 7.17 0.66 4.58
Tween 0.964 7.92 0.68 5.19
LP 1.024 7.97 0.66 5.41
Tab.1  Photovoltaic parameters of PSCs prepared using different surfactants
Fig.4  SEM morphologies of perovskite films prepared at different annealing temperatures: (a) 130°C; (b) 140°C; (c) 150°C; (d) 160°C; (e) 170°C; and (f) 180°C
Fig.5  Characterization of the devices prepared at various temperatures from 130°C to 180°C: (a) UV–vis absorption spectra; (b) X-ray diffraction; (c) J–V curves; and (d) EQE spectra of the best devices
Temperature/°C Voc/V Jsc/(mA·cm−2) FF PCE/%
130 1.052 8.02 0.54 4.57
140 1.022 7.97 0.60 4.90
150 1.175 8.22 0.75 7.29
160 1.139 8.08 0.76 6.98
170 1.118 8.06 0.73 6.56
180 1.033 8.02 0.77 6.39
Tab.2  Photovoltaic parameters of blade-coated PSCs at different temperatures
Fig.6  (a) UV–vis transmittance spectra of samples with different stackings of the functional layers (PSK: perovskite); (b) J–V curves of the best devices prepared with different volumes of AgNWs; and (c) optical morphologies of devices without (left) and with (right) the transparent electrode
volume/mL Voc/V Jsc/(mA·cm−2) FF PCE/%
50 1.116 7.67 0.54 4.61
100 1.052 8.14 0.60 5.11
Tab.3  Photovoltaic parameters of PSCs prepared with different volumes of AgNWs
1 B P Jelle, C Breivik. State-of-the-art building integrated photovoltaics. Energy Procedia, 2012, 20: 68–77
https://doi.org/10.1016/j.egypro.2012.03.009
2 Y Dou, Z Liu, Z Wu, Y Liu, J Li, C Leng, D Fang, G Liang, J Xiao, W Li, X Wei, F Huang, Y B Cheng, J Zhong. Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy, 2020, 71: 104567
https://doi.org/10.1016/j.nanoen.2020.104567
3 Q Tai, F Yan. Emerging semitransparent solar cells: materials and device design. Advanced Materials, 2017, 29(34): 1700192
https://doi.org/10.1002/adma.201700192 pmid: 28683169
4 T Bu, J Li, F Zheng, W Chen, X Wen, Z Ku, Y Peng, J Zhong, Y B Cheng, F Huang. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9(1): 4609
https://doi.org/10.1038/s41467-018-07099-9 pmid: 30389948
5 T Bu, X Liu, Y Zhou, J Yi, X Huang, L Luo, J Xiao, Z Ku, Y Peng, F Huang, Y B Cheng, J Zhong. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 2017, 10(12): 2509–2515
https://doi.org/10.1039/C7EE02634J
6 W S Yang, B W Park, E H Jung, N J Jeon, Y C Kim, D U Lee, S S Shin, J Seo, E K Kim, J H Noh, S I Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
https://doi.org/10.1126/science.aan2301 pmid: 28663498
7 T Bu, L Wu, X Liu, X Yang, P Zhou, X Yu, T Qin, J Shi, S Wang, S Li, Z Ku, Y Peng, F Huang, Q Meng, Y B Cheng, J Zhong. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 2017, 7(20): 1700576
https://doi.org/10.1002/aenm.201700576
8 NREL Chart. Best research-cell efficiencies. 2020
9 Y Zhang, Y Liang, Y Wang, F Guo, L Sun, D Xu. Planar FAPbBr3 solar cells with power conversion efficiency above 10%. ACS Energy Letters, 2018, 3(8): 1808–1814
https://doi.org/10.1021/acsenergylett.8b00540
10 A T Barrows, A J Pearson, C K Kwak, A D F Dunbar, A R Buckley, D G Lidzey. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7(9): 2944–2950
https://doi.org/10.1039/C4EE01546K
11 F Ye, H Chen, F Xie, W Tang, M Yin, J He, E Bi, Y Wang, X Yang, L Han. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301
https://doi.org/10.1039/C6EE01411A
12 J H Kim, S T Williams, N Cho, C C Chueh, A K Y Jen. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Advanced Energy Materials, 2015, 5(4): 1401229
https://doi.org/10.1002/aenm.201401229
13 Y Deng, Q Dong, C Bi, Y Yuan, J Huang. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active Layer. Advanced Energy Materials, 2016, 6(11): 1600372
https://doi.org/10.1002/aenm.201600372
14 M Yang, Z Li, M O Reese, O G Reid, D H Kim, S Siol, T R Klein, Y Yan, J J Berry, M F A M van Hest, K Zhu. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017, 2(5): 17038
https://doi.org/10.1038/nenergy.2017.38
15 Y Deng, X Zheng, Y Bai, Q Wang, J Zhao, J Huang. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018, 3(7): 560–566
https://doi.org/10.1038/s41560-018-0153-9
16 K Hwang, Y S Jung, Y J Heo, F H Scholes, S E Watkins, J Subbiah, D J Jones, D Y Kim, D Vak. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27(7): 1241–1247
https://doi.org/10.1002/adma.201404598 pmid: 25581092
17 D Wang, J Zheng, X Wang, J Gao, W Kong, C, Cheng B. XuImprovement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. Journal of Energy Chemistry, 2019, 38(1): 207–213
18 Y Deng, E Peng, Y Shao, Z Xiao, Q Dong, J Huang. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015, 8(5): 1544–1550
https://doi.org/10.1039/C4EE03907F
19 M He, B Li, X Cui, B Jiang, Y He, Y Chen, D O’Neil, P Szymanski, M A Ei-Sayed, J Huang, Z Lin. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8(1): 16045
https://doi.org/10.1038/ncomms16045 pmid: 28685751
20 S Tang, Y Deng, X Zheng, Y Bai, Y Fang, Q Dong, H Wei, J Huang. Composition engineering in doctor-blading of perovskite solar cells. Advanced Energy Materials, 2017, 7(18): 1700302
https://doi.org/10.1002/aenm.201700302
21 F Ye, W Tang, F Xie, M Yin, J He, Y Wang, H Chen, Y Qiang, X Yang, L Han. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Advanced Materials, 2017, 29(35): 1701440
https://doi.org/10.1002/adma.201701440 pmid: 28707309
22 L Zuo, X Shi, W Fu, A K Jen. Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Advanced Materials, 2019, 31(36): 1901683
https://doi.org/10.1002/adma.201901683 pmid: 31342575
23 X Liu, T Bu, J Li, J He, T Li, J Zhang, W Li, Z Ku, Y Peng, F Huang, Y B Cheng, J Zhong. Stacking n-type layers: effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. Nano Energy, 2018, 44: 34–42
https://doi.org/10.1016/j.nanoen.2017.11.069
24 J Dai, H Zheng, C Zhu, J Lu, C Xu. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(20): 4408–4413
https://doi.org/10.1039/C6TC00563B
25 A D Wright, C Verdi, R L Milot, G E Eperon, M A Pérez-Osorio, H J Snaith, F Giustino, M B Johnston, L M Herz. Electron-phonon coupling in hybrid lead halide perovskites. Nature Communications, 2016, 7(1): 11755
https://doi.org/10.1038/ncomms11755 pmid: 27225329
26 K Galkowski, A A Mitioglu, A Surrente, Z Yang, D K Maude, P Kossacki, G E Eperon, J T Wang, H J Snaith, P Plochocka, R J Nicholas. Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites. Nanoscale, 2017, 9(9): 3222–3230
https://doi.org/10.1039/C7NR00355B pmid: 28225143
27 C Bi, Y Shao, Y Yuan, Z Xiao, C Wang, Y Gao, J Huang. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(43): 18508–18514
https://doi.org/10.1039/C4TA04007D
28 W Nie, H Tsai, R Asadpour, J C Blancon, A J Neukirch, G Gupta, J J Crochet, M Chhowalla, S Tretiak, M A Alam, H L Wang, A D Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
https://doi.org/10.1126/science.aaa0472 pmid: 25635093
29 F C Hanusch, E Wiesenmayer, E Mankel, A Binek, P Angloher, C Fraunhofer, N Giesbrecht, J M Feckl, W Jaegermann, D Johrendt, T Bein, P Docampo. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. Journal of Physical Chemistry Letters, 2014, 5(16): 2791–2795
https://doi.org/10.1021/jz501237m pmid: 26278080
30 L, Gao G. Yang Organic-inorganic halide perovskites: from crystallization of polycrystalline films to solar cell applications. Solar RRL, 2020, 4(2): 1900200
31 Y Li, B Ding, Q Q Chu, G J Yang, M Wang, C X Li, C J Li. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 2017, 7(1): 46141
https://doi.org/10.1038/srep46141 pmid: 28401890
32 K Yang, F Li, J Zhang, C P Veeramalai, T Guo. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27(9): 095202
https://doi.org/10.1088/0957-4484/27/9/095202 pmid: 26821871
33 H Kim, H S Kim, J Ha, N G Park, S Yoo. Empowering semi-transparent solar cells with thermal-mirror functionality. Advanced Energy Materials, 2016, 6(14): 1502466
https://doi.org/10.1002/aenm.201502466
[1] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[2] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[3] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[4] Luhua LAN, Jianhua ZOU, Congbiao JIANG, Benchang LIU, Lei WANG, Junbiao PENG. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes[J]. Front. Optoelectron., 2017, 10(4): 329-352.
[5] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed