|
|
Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells |
Hangkai YING1, Yifan LIU1, Yuxi DOU1, Jibo ZHANG1, Zhenli WU1, Qi ZHANG2,3, Yi-Bing CHENG1,4, Jie ZHONG1( ) |
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China 2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 3. School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK 4. Department of Materials Science and Engineering, Monash University, VIC 3800, Australia |
|
|
Abstract Organic–inorganic hybrid perovskite solar cells have generated wide interest due to the rapid development of their photovoltaic conversion efficiencies. However, the majority of the reported devices have been fabricated via spin coating with a device area of <1 cm2. In this study, we fabricated a wide-bandgap formamidinium lead bromide (FAPbBr3) film using a cost-effective, high-yielding doctor-blade-coating process. The effects of different surfactants, such as l-α-phosphatidylcholine, polyoxyethylene sorbitan monooleate, sodium lauryl sulfonate, and hexadecyl trimethyl ammonium bromide, were studied during the printing process. Accompanying the optimization of the blading temperature, crystal sizes of over 10 mm and large-area perovskite films of 5 cm × 5 cm were obtained using this method. The printed FAPbBr3 solar cells exhibited a short-circuit current density of 8.22 mA/cm2, an open-circuit voltage of 1.175 V, and an efficiency of 7.29%. Subsequently, we replaced the gold with silver nanowires as the top electrode to prepare a semitransparent perovskite solar cell with an average transmittance (400–800 nm) of 25.42%, achieving a high-power efficiency of 5.11%. This study demonstrates efficient doctor-blading printing for preparing large-area FAPbBr3 films that possess high potential for applications in building integrated photovoltaics.
|
Keywords
semitransparent
printing
perovskite solar cell (PSC)
doctor blading
wide bandgap
|
Corresponding Author(s):
Jie ZHONG
|
Just Accepted Date: 28 June 2020
Online First Date: 20 July 2020
Issue Date: 27 September 2020
|
|
1 |
B P Jelle, C Breivik. State-of-the-art building integrated photovoltaics. Energy Procedia, 2012, 20: 68–77
https://doi.org/10.1016/j.egypro.2012.03.009
|
2 |
Y Dou, Z Liu, Z Wu, Y Liu, J Li, C Leng, D Fang, G Liang, J Xiao, W Li, X Wei, F Huang, Y B Cheng, J Zhong. Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy, 2020, 71: 104567
https://doi.org/10.1016/j.nanoen.2020.104567
|
3 |
Q Tai, F Yan. Emerging semitransparent solar cells: materials and device design. Advanced Materials, 2017, 29(34): 1700192
https://doi.org/10.1002/adma.201700192
pmid: 28683169
|
4 |
T Bu, J Li, F Zheng, W Chen, X Wen, Z Ku, Y Peng, J Zhong, Y B Cheng, F Huang. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 2018, 9(1): 4609
https://doi.org/10.1038/s41467-018-07099-9
pmid: 30389948
|
5 |
T Bu, X Liu, Y Zhou, J Yi, X Huang, L Luo, J Xiao, Z Ku, Y Peng, F Huang, Y B Cheng, J Zhong. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 2017, 10(12): 2509–2515
https://doi.org/10.1039/C7EE02634J
|
6 |
W S Yang, B W Park, E H Jung, N J Jeon, Y C Kim, D U Lee, S S Shin, J Seo, E K Kim, J H Noh, S I Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
https://doi.org/10.1126/science.aan2301
pmid: 28663498
|
7 |
T Bu, L Wu, X Liu, X Yang, P Zhou, X Yu, T Qin, J Shi, S Wang, S Li, Z Ku, Y Peng, F Huang, Q Meng, Y B Cheng, J Zhong. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 2017, 7(20): 1700576
https://doi.org/10.1002/aenm.201700576
|
8 |
NREL Chart. Best research-cell efficiencies. 2020
|
9 |
Y Zhang, Y Liang, Y Wang, F Guo, L Sun, D Xu. Planar FAPbBr3 solar cells with power conversion efficiency above 10%. ACS Energy Letters, 2018, 3(8): 1808–1814
https://doi.org/10.1021/acsenergylett.8b00540
|
10 |
A T Barrows, A J Pearson, C K Kwak, A D F Dunbar, A R Buckley, D G Lidzey. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014, 7(9): 2944–2950
https://doi.org/10.1039/C4EE01546K
|
11 |
F Ye, H Chen, F Xie, W Tang, M Yin, J He, E Bi, Y Wang, X Yang, L Han. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301
https://doi.org/10.1039/C6EE01411A
|
12 |
J H Kim, S T Williams, N Cho, C C Chueh, A K Y Jen. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Advanced Energy Materials, 2015, 5(4): 1401229
https://doi.org/10.1002/aenm.201401229
|
13 |
Y Deng, Q Dong, C Bi, Y Yuan, J Huang. Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active Layer. Advanced Energy Materials, 2016, 6(11): 1600372
https://doi.org/10.1002/aenm.201600372
|
14 |
M Yang, Z Li, M O Reese, O G Reid, D H Kim, S Siol, T R Klein, Y Yan, J J Berry, M F A M van Hest, K Zhu. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017, 2(5): 17038
https://doi.org/10.1038/nenergy.2017.38
|
15 |
Y Deng, X Zheng, Y Bai, Q Wang, J Zhao, J Huang. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018, 3(7): 560–566
https://doi.org/10.1038/s41560-018-0153-9
|
16 |
K Hwang, Y S Jung, Y J Heo, F H Scholes, S E Watkins, J Subbiah, D J Jones, D Y Kim, D Vak. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 2015, 27(7): 1241–1247
https://doi.org/10.1002/adma.201404598
pmid: 25581092
|
17 |
D Wang, J Zheng, X Wang, J Gao, W Kong, C, Cheng B. XuImprovement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization. Journal of Energy Chemistry, 2019, 38(1): 207–213
|
18 |
Y Deng, E Peng, Y Shao, Z Xiao, Q Dong, J Huang. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015, 8(5): 1544–1550
https://doi.org/10.1039/C4EE03907F
|
19 |
M He, B Li, X Cui, B Jiang, Y He, Y Chen, D O’Neil, P Szymanski, M A Ei-Sayed, J Huang, Z Lin. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8(1): 16045
https://doi.org/10.1038/ncomms16045
pmid: 28685751
|
20 |
S Tang, Y Deng, X Zheng, Y Bai, Y Fang, Q Dong, H Wei, J Huang. Composition engineering in doctor-blading of perovskite solar cells. Advanced Energy Materials, 2017, 7(18): 1700302
https://doi.org/10.1002/aenm.201700302
|
21 |
F Ye, W Tang, F Xie, M Yin, J He, Y Wang, H Chen, Y Qiang, X Yang, L Han. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Advanced Materials, 2017, 29(35): 1701440
https://doi.org/10.1002/adma.201701440
pmid: 28707309
|
22 |
L Zuo, X Shi, W Fu, A K Jen. Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Advanced Materials, 2019, 31(36): 1901683
https://doi.org/10.1002/adma.201901683
pmid: 31342575
|
23 |
X Liu, T Bu, J Li, J He, T Li, J Zhang, W Li, Z Ku, Y Peng, F Huang, Y B Cheng, J Zhong. Stacking n-type layers: effective route towards stable, efficient and hysteresis-free planar perovskite solar cells. Nano Energy, 2018, 44: 34–42
https://doi.org/10.1016/j.nanoen.2017.11.069
|
24 |
J Dai, H Zheng, C Zhu, J Lu, C Xu. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(20): 4408–4413
https://doi.org/10.1039/C6TC00563B
|
25 |
A D Wright, C Verdi, R L Milot, G E Eperon, M A Pérez-Osorio, H J Snaith, F Giustino, M B Johnston, L M Herz. Electron-phonon coupling in hybrid lead halide perovskites. Nature Communications, 2016, 7(1): 11755
https://doi.org/10.1038/ncomms11755
pmid: 27225329
|
26 |
K Galkowski, A A Mitioglu, A Surrente, Z Yang, D K Maude, P Kossacki, G E Eperon, J T Wang, H J Snaith, P Plochocka, R J Nicholas. Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites. Nanoscale, 2017, 9(9): 3222–3230
https://doi.org/10.1039/C7NR00355B
pmid: 28225143
|
27 |
C Bi, Y Shao, Y Yuan, Z Xiao, C Wang, Y Gao, J Huang. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(43): 18508–18514
https://doi.org/10.1039/C4TA04007D
|
28 |
W Nie, H Tsai, R Asadpour, J C Blancon, A J Neukirch, G Gupta, J J Crochet, M Chhowalla, S Tretiak, M A Alam, H L Wang, A D Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
https://doi.org/10.1126/science.aaa0472
pmid: 25635093
|
29 |
F C Hanusch, E Wiesenmayer, E Mankel, A Binek, P Angloher, C Fraunhofer, N Giesbrecht, J M Feckl, W Jaegermann, D Johrendt, T Bein, P Docampo. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. Journal of Physical Chemistry Letters, 2014, 5(16): 2791–2795
https://doi.org/10.1021/jz501237m
pmid: 26278080
|
30 |
L, Gao G. Yang Organic-inorganic halide perovskites: from crystallization of polycrystalline films to solar cell applications. Solar RRL, 2020, 4(2): 1900200
|
31 |
Y Li, B Ding, Q Q Chu, G J Yang, M Wang, C X Li, C J Li. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 2017, 7(1): 46141
https://doi.org/10.1038/srep46141
pmid: 28401890
|
32 |
K Yang, F Li, J Zhang, C P Veeramalai, T Guo. All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27(9): 095202
https://doi.org/10.1088/0957-4484/27/9/095202
pmid: 26821871
|
33 |
H Kim, H S Kim, J Ha, N G Park, S Yoo. Empowering semi-transparent solar cells with thermal-mirror functionality. Advanced Energy Materials, 2016, 6(14): 1502466
https://doi.org/10.1002/aenm.201502466
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|