Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 360-366    https://doi.org/10.1007/s12200-018-0847-4
RESEARCH ARTICLE
High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells
Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU()
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(264 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

N-type doping in electron transport materials is an effective way to improve the electron collection and enhance the performance of the perovskite solar cells (PSCs). Here, for the first time, an antibiotic and antimicrobial compound of 1-(o-Tolyl) biguanide (oTb) is used to dope the electron transport material of phenyl-C61-butyric acid methyl ester (PCBM). The oTb doping into the PCBM can increase the conductivity and reduce the work function of the PCBM. The oTb doping can significantly enhance the fill factor (FF) of the perovskite solar cells with the structure of glass/ITO/NiOx/MAPbI3/(oTb)PCBM/(PEIE)/Ag. For the cells without PEIE (polyethylenimine ethoxylated) coating, the oTb doping increases the FF from 0.57 to 0.73. S-shaped of the current density-voltage (J-V) characteristic under illumination is removed after the oTb doping. For the cells with PEIE coating between the (oTb)PCBM and Ag, the oTb doping increases the FF from 0.70 to 0.82. These results show the potential of the oTb as an n-dopant in the applications of perovskite solar cells.

Keywords perovskite solar cells      n-doping      biguanide      fill factor (FF)      electron transporting layer     
Corresponding Author(s): Yinhua ZHOU   
Just Accepted Date: 12 September 2018   Online First Date: 30 November 2018    Issue Date: 21 December 2018
 Cite this article:   
Ru GE,Fei QIN,Lin HU, et al. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0847-4
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/360
Fig.1  Chemical structure of oTb and PCBM, and device structure of planar perovskite solar cells with the pristine or oTB doped PCBM as the electron transporting layer. Devices with and without PEIE layer between the (oTb)PCBM layer and Ag electrode are both fabricated for comparison
Fig.2  (a) Device structure of the conductivity measurements (transmission line method) for the samples of (oTb)PCBM; (b) conductivities and work functions of pristine and oTb-doped PCBM films with different doping concentrations
Fig.3  (a) J-V curves of the planar perovskite solar cells; (b) FF standard box plots of the perovskite solar cells with the structure of ITO/NiOx/MAPbI3/(oTb)PCBM/Ag, where the (oTb)PCBM denotes pristien or oTb-doped PCBM films with different doping concentrations
doping concentration
of oTb into PCBM
VOC/V JSC/(mA·cm−2) FF/% PCE/%
pristine PCBM 1.03 20.0 0.57 11.7
0.1 wt.% oTb 1.06 20.64 0.68 14.7
0.3 wt.% oTb 1.06 19.50 0.69 14.2
0.5 wt.% oTb 1.08 19.19 0.71 14.6
1 wt.% oTb 1.05 18.73 0.73 14.2
Tab.1  Photovoltaic performance of the perovskite solar cells with the device structure of ITO/NiOx/MAPbI3/(oTb)PCBM/Ag. Note: there is no PEIE coating between the (oTb)PCBM and Ag electrode
Fig.4  (a) J-V curves of the planar perovskite solar cells (PSCs ); (b) FF standard box plots of the PSCs with the structure of ITO/NiOx/MAPbI3/(oTb)PCBM/PEIE/Ag, where the (oTb)PCBM denotes pristien or oTb-doped PCBM films with different doping concentrations, and a PEIE layer is inserted between the (oTb)PCBM and Ag electrode
doping concentration
of oTb into PCBM
VOC/V JSC/(mA·cm−2) FF/% PCE/%
pristine PCBM 1.06 20.55 0.70 15.1
0.1 wt.% oTb 1.06 20.25 0.80 17.1
0.3 wt.% oTb 1.07 19.89 0.80 17.1
0.5 wt.% oTb 1.07 19.13 0.81 16.6
1 wt.% oTb 1.06 18.65 0.82 16.1
Tab.2  Photovoltaic performance of the perovskite solar cells with the device structure of ITO/NiOx/MAPbI3/(oTb)PCBM/PEIE/Ag. A PEIE coating is inserted between the (oTb)PCBM and Ag electrode
Fig.5  Time-resolved photoluminescence (PL) decay of glass/MAPbI3/(oTb)PCBM with different doping ratios
1
2 APolman, M Knight, E CGarnett, BEhrler, W CSinke. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424
https://doi.org/10.1126/science.aad4424 pmid: 27081076
3 J PCorrea-Baena, MSaliba, TBuonassisi, MGrätzel, AAbate, WTress, AHagfeldt. Promises and challenges of perovskite solar cells. Science, 2017, 358(6364): 739–744
https://doi.org/10.1126/science.aam6323 pmid: 29123060
4 ARajagopal, K Yao, A KJen. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Advanced Materials, 2018, 30(32): e1800455
https://doi.org/10.1002/adma.201800455 pmid: 29883006
5 YJiang, B Luo, FJiang, FJiang, CFuentes-Hernandez, TLiu, L Mao, SXiong, ZLi, T Wang, BKippelen, YZhou. Efficient colorful perovskite solar cells using a top polymer electrode simultaneously as spectrally selective antireflection coating. Nano Letters, 2016, 16(12): 7829–7835
https://doi.org/10.1021/acs.nanolett.6b04019 pmid: 27960502
6 FQin, J H Tong, R Ge, B WLuo, F YJiang, T FLiu, Y YJiang, Z YXu, LMao, W Meng, S XXiong, Z FLi, L QLi, Y HZhou. Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(36): 14017–14024
https://doi.org/10.1039/C6TA06657G
7 YBai, X Meng, SYang. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Advanced Energy Materials, 2018, 8(5): 1701883
https://doi.org/10.1002/aenm.201701883
8 DLuo, W Yang, ZWang, ASadhanala, QHu, R Su, RShivanna, G FTrindade, J FWatts, ZXu, T Liu, KChen, FYe, P Wu, LZhao, JWu, Y Tu, YZhang, XYang, W Zhang, R HFriend, QGong, H J Snaith, R Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360(6396): 1442–1446
https://doi.org/10.1126/science.aap9282 pmid: 29954975
9 P YGu, N Wang, C YWang, Y CZhou, G KLong, M MTian, W QChen, X WSun, M GKanatzidis, Q CZhang. Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(16): 7339–7344
https://doi.org/10.1039/C7TA01764B
10 MLi, C Zhao, Z KWang, C CZhang, H K HLee, APockett, JBarbé, W CTsoi, Y GYang, M JCarnie, X YGao, W XYang, J RDurrant, L SLiao, S MJain. Interface modification by ionic liquid: a promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells. Advanced Energy Materials, 2018, 8(24): 1801509
https://doi.org/10.1002/aenm.201801509
11 S SMali, C K Hong. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8(20): 10528–10540
https://doi.org/10.1039/C6NR02276F pmid: 27161123
12 Z KWang, L S Liao. Doped charge-transporting layers in planar perovskite solar cells. Advanced Optical Materials, 2018, 6(17): 1800276
https://doi.org/10.1002/adom.201800276
13 TZhao, C C Chueh, Q Chen, ARajagopal, A K YJen. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Letters, 2016, 1(4): 757–763
https://doi.org/10.1021/acsenergylett.6b00327
14 P WLiang, C C Chueh, S T Williams, A K Y Jen. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Advanced Energy Materials, 2015, 5(10): 1402321
https://doi.org/10.1002/aenm.201402321
15 CKuang, G Tang, TJiu, HYang, H Liu, BLi, WLuo, X Li, WZhang, FLu, J Fang, YLi. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Letters, 2015, 15(4): 2756–2762
https://doi.org/10.1021/acs.nanolett.5b00787 pmid: 25803148
16 C GTang, M C Ang, K K Choo, V Keerthi, J KTan, M NSyafiqah, TKugler, J HBurroughes, R QPng, L LChua, P KHo. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature, 2016, 539(7630): 536–540
https://doi.org/10.1038/nature20133 pmid: 27882976
17 C YChang, W K Huang, Y C Chang, K T Lee, C T Chen. A solution-processed n-doped fullerene cathode interfacial layer for efficient and stable large-area perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(2): 640–648
https://doi.org/10.1039/C5TA09080F
18 HZhou, Q Chen, GLi, SLuo, T B Song, H S Duan, Z Hong, JYou, YLiu, Y Yang. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546
https://doi.org/10.1126/science.1254050 pmid: 25082698
19 D XYuan, X D Yuan, Q Y Xu, M F Xu, X B Shi, Z K Wang, L S Liao. A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17(40): 26653–26658
https://doi.org/10.1039/C5CP03995A pmid: 26394092
20 YLin, L Shen, JDai, YDeng, Y Wu, YBai, XZheng, JWang, Y Fang, HWei, WMa, X C Zeng, X Zhan, JHuang. π-conjugated lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Advanced Materials, 2017, 29(7): 1604545
https://doi.org/10.1002/adma.201604545
21 LHu, T Liu, LSun, SXiong, FQin, X Jiang, YJiang, YZhou. Suppressing generation of iodine impurity via an amidine additive in perovskite solar cells. Chemical Communications, 2018, 54(37): 4704–4707
https://doi.org/10.1039/C8CC02329H pmid: 29682659
22 Y YJiang, J Li, S XXiong, F YJiang, T FLiu, FQin, L Hu, Y HZhou. Dual functions of interface passivation and n-doping using 2,6-dimethoxypyridine for enhanced reproducibility and performance of planar perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(33): 17632–17639
https://doi.org/10.1039/C7TA04851C
23 Q QYe, Z K Wang, M Li, C CZhang, K HHu, L SLiao. N-type doping of fullerenes for planar perovskite solar cells. ACS Energy Letters, 2018, 3(4): 875–882
https://doi.org/10.1021/acsenergylett.8b00217
24 MLi, Z K Wang, T Kang, YYang, XGao, C S Hsu, Y Li, L SLiao. Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43: 47–54
https://doi.org/10.1016/j.nanoen.2017.11.008
25 LHu, T Liu, JDuan, XMa, C Ge, YJiang, FQin, S Xiong, FJiang, BHu, X Gao, YYi, YZhou. An amidine-type n-dopant for solution-processed field-effect transistors and perovskite solar cells. Advanced Functional Materials, 2017, 27(41): 1703254
https://doi.org/10.1002/adfm.201703254
26 Z YBin, J W Li, L D Wang, L Duan. Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy & Environmental Science, 2016, 9(11): 3424–3428
https://doi.org/10.1039/C6EE01987K
27 ZWang, D P McMeekin, N Sakai, Svan Reenen, KWojciechowski, J BPatel, M BJohnston, H JSnaith. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers. Advanced Materials, 2017, 29(5): 1604186
https://doi.org/10.1002/adma.201604186
28 T JBeaula, P Muthuraja, MSethuram, MDhandapani, V KRastogi, V BJothy. Biological and spectral studies of O-tolyl biguanide: experimental and theoretical approach. Journal of Molecular Structure, 2017, 1128: 290–299
https://doi.org/10.1016/j.molstruc.2016.08.060
29 YZhou, C Fuentes-Hernandez, JShim, JMeyer, A JGiordano, HLi, P Winget, TPapadopoulos, HCheun, JKim, M Fenoll, ADindar, WHaske, ENajafabadi, T MKhan, HSojoudi, SBarlow, SGraham, J LBrédas, S RMarder, AKahn, B Kippelen. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327–332
https://doi.org/10.1126/science.1218829 pmid: 22517855
30 F YJiang, T F Liu, B W Luo, J H Tong, F Qin, S XXiong, Z FLi, Y HZhou. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(4): 1208–1213
https://doi.org/10.1039/C5TA08744A
31 TLiu, F Jiang, FQin, WMeng, Y Jiang, SXiong, JTong, Z Li, YLiu, YZhou. Nonreduction-active hole-transporting layers enhancing open-circuit voltage and efficiency of planar perovskite solar cells. ACS Applied Materials & Interfaces, 2016, 8(49): 33899–33906
https://doi.org/10.1021/acsami.6b13324 pmid: 27960360
[1] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed