Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 196-224    https://doi.org/10.1007/s12200-020-1039-6
REVIEW ARTICLE
Dimensionality engineering of metal halide perovskites
Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT()
Department of Chemical Engineering, Dalhousie University, Halifax, Nova Scotia, B3J 1Z1, Canada
 Download: PDF(4176 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal halide perovskites are a class of materials that are ideal for photodetectors and solar cells due to their excellent optoelectronic properties. Their low-cost and low temperature synthesis have made them attractive for extensive research aimed at revolutionizing the semiconductor industry. The rich chemistry of metal halide perovskites allows compositional engineering resulting in facile tuning of the desired optoelectronic properties. Moreover, using different experimental synthesis and deposition techniques such as solution processing, chemical vapor deposition and hot-injection methods, the dimensionality of the perovskites can be altered from 3D to 0D, each structure opening a new realm of applications due to their unique properties. Dimensionality engineering includes both morphological engineering–reducing the thickness of 3D perovskite into atomically thin films–and molecular engineering–incorporating long-chain organic cations into the perovskite mixture and changing the composition at the molecular level. The optoelectronic properties of the perovskite structure including its band gap, binding energy and carrier mobility depend on both its composition and dimensionality. The plethora of different photodetectors and solar cells that have been made with different compositions and dimensions of perovskite will be reviewed here. We will conclude our review by discussing the kinetics and dynamics of different dimensionalities, their inherent stability and toxicity issues, and how reaching similar performance to 3D in lower dimensionalities and their large-scale deployment can be achieved.

Keywords optoelectronics      solar cells      perovskite      photodetectors      metal halides      dimensionality     
Corresponding Author(s): Ghada I. KOLEILAT   
Just Accepted Date: 10 July 2020   Online First Date: 06 August 2020    Issue Date: 27 September 2020
 Cite this article:   
Rashad F. KAHWAGI,Sean T. THORNTON,Ben SMITH, et al. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1039-6
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/196
Fig.1  3D perovskite. (a) Low-dimensional perovskite hybrids. Reprinted with permission from Ref. [3], Copyright 2018, Royal Society of Chemistry. (b) Morphological low-dimensional perovskites. Reprinted with permission from Ref. [2], Copyright 2019, Elsevier
Fig.2  Perovskite crystal structure, showing the position of the A, B and X ion sites. Reprinted with permission from Ref. [33], Copyright 2014, Springer Nature
Fig.3  (a) TEM image of 2D perovskite nanosheet. Reprinted with permission from Ref. [44], Copyright 2016, American Chemical Society. (b) Schematic showing the structure of 2D perovskite nanoplatelet. Reprinted with permission from Ref. [13], Copyright 2015, American Chemical Society. (c) TEM image of 2D perovskite nanodisk. Reprinted with permission from Ref. [45], Copyright 2015, Royal Society of Chemistry
Fig.4  Perovskite lattices with different dimensions, on the left: 3D perovskite (n = ∞), in the middle: quasi-2D perovskite (1<n<∞) and on the right: pure 2D perovskite (n = 1). Reprinted with permission from Ref. [5], Copyright 2018, Springer Nature
Fig.5  Schematic crystal structures of the quasi-2D perovskites (MTEA)2(MA)n1PbnI3n+1 and (BA)2(MA)n1PbnI3n+1. Reprinted with permission from Ref. [62], Copyright 2020, Springer Nature
organic cation example perovskite device PCE Ref.
n-BA+/n-butyl-ammonium (BA)2(MA)3Pb4I13
(BA)n(MA)n1PbnI3n+1
BA2MAn1SnnI3n+1
solar cell
solar cell
photodetector
solar cell
12.52
17.26
[57]
[64]
[58]
[65]
PEA+/2-phenylethylammonium (PEA)2(MA)n1PbnI3n+1
(PEA)2Ge1nSnnI4
(PEA)2(MA)n−1PbnBr3n+1
solar cell
solar cell
LED
15.3

[59]
[66]
[67]
PDA+/propane–1,3-diammonium PDAMAn−1PbnI3n+1 solar cell 13.0 [51]
C(NH2)3+/guanidinium (C(NH2)3)(CH3NH3)nPbnI3n+1 (n = 1, 2, 3) solar cell 7.26 [68]
BDA+/1,4–butanediammonium BDAMAn–1PbnX3n+1 solar cell 17.91 [54]
NMA+/naphthylmethylammonium (NMA)2(FA)Pb2I6Br LED [69]
3AMP+/3-(aminomethyl)piperidinium (3AMP)(MA)3Pb4I13 solar cell 12.04 [56]
C6H5CH2NH3+ (C6H5CH2NH3)2(FA)8Pb9I28 solar cell 17.40 [70]
PEI+/polyethyleneimine (PEI)2(MA)n−1PbnI3n+1 solar cell 8.77 [71]
ThMA+/2-thiophenemethylammonium (ThMA)2(MA)n1PbnI3n+1 solar cell 15.42 [72]
ALA+/allylammonium (ALA)2(MA)n1PbnI3n1 solar cell 16.5 [73]
MTEA+/2-(methylthio)ethylammonium (MTEA)2(MA)4Pb5I16 solar cell 17.8 [62]
Tab.1  A list of organic cations used in quasi-2D perovskites with their potential optoelectronic applications
Fig.6  Multilayered 2D hybrid perovskite ((BA)2(MA)n1Pbn I3n+1) film showing the enhanced charge transport because of the n = 2 to n = ∞ layering. The film is approximately 358 nm thick. The electron transport time is approximately 477 ps and the hole transfer time is approximately 987 ps. Reprinted with permission from Ref. [77], Copyright 2017, American Chemical Society
Fig.7  Structure of 1D perovskite (C4N2H14PbBr4) showing [PbBr42] octahedra surrounded by C4N2H142+ organic cations [89]
Fig.8  Highlighting the direct-indirect nature of the perovskite bandgap with (a) Rashba spin-orbit coupling effect on optical transition. Reprinted with permission from Ref. [107], Copyright 2018, Wiley. (b) Proposed band diagram for the perovskite’s tetragonal phase with a slightly shifted conduction band minimum (CBM) compared to the valence band maximum (VBM), highlighting the indirect bandgap, while the minimum in conduction band showing the direct bandgap (CBD). Reprinted with permission from Ref. [108], Copyright 2017, Springer Nature
Fig.9  Bandgaps of different multi-dimensional perovskite materials [113]
Fig.10  Several perovskite films with varying X-site halide anion and their respective bandgaps and Fermi levels. Reprinted with permission from Ref. [118], Copyright 2018, Wiley
Fig.11  Correlation between different A site cations and their (a) steric sizes, (b) bond angles and (c) bandgap values. Reprinted with permission from Ref. [120], Copyright 2014, Springer Nature
Fig.12  Different bandgap values for 2D perovskites with spin-orbit coupling (SOC) or without (no SOC). The name representation show the metal atom first with the in-plane and axial halogens [15,124,125]
Fig.13  Diagram showing recombination mechanisms in halide perovskite. Seen from left to right: bimolecular, a radiative process where an electron from the conduction band (CB) and hole from the valance band (VB) combine to produce a photon. Trap-assisted recombination, a monomolecular, non-radiative process where a carrier moves to a defect induced localized energy level between the VB and CB. Auger recombination, a non-radiative process where a carrier transmits its energy to a carrier of the same type allowing it to recombine. Reprinted with permission from Ref. [135], Copyright 2018, Woodhead Publishing
Fig.14  Diagram demonstrating difference between (a) vertical-structure and (b) lateral-structure photodetectors. Vertical-structure photodetectors possess a transparent incident light window at the bottom. In contrast, lateral-structure photodetectors have an incident light window on top. Reprinted with permission from Ref. [189], Copyright 2013, Wiley
Fig.15  (a) Architectural device schematic showing the structure of the bulk heterojunction photodetector. The bottoms substrate consists of an Si gate, an SiO2 gate dielectric, and Au source/drain electrodes. The active layer is a heterojunction of perovskite nanocrystals and PC71BM). The inset depicts the chemical structure of PC71BM. (b) HRTEM image of the CsPbBr3 nanocrystals, scale 50 nm. Reprinted with permission from Ref. [200], Copyright 2017, ACS Publications
perovskite/dimensionality device R/(A·W1) EQE/% D*/Jones response time (rise/fall time) Ref.
MAPbI3/3D photoconductor
photoconductor
photodiode
photoconductor
3.49
164.2
2.71
219
1190
~2 × 104

4.1 × 104


3.4 × 1013
3.1 × 1012
<0.1 s


[188]
[57]
[190]
[191]
MAPbCl3/3D photoconductor 3.73 1115 >9 × 1011 130 ns [192]
MAPbBr3xIx/3D photoconductor 0.055 <20 µs [193]
MAPbX3, (where X= Cl, I or Br)/3D photodiode 0.21 93 7.4 × 1012 <500 ns [185]
MAPbI3xClx/3D photodiode 80 8 × 1013 ~ 600 ns [186]
MAPbBrx/3D* photodiode 3 2 × 1010 [182]
MAPbBr3/3D photodiode 0.0136 5.9 × 1010 520 ns / 2435 ns [184]
CsPbBr3/3D photoconductor 216 17.64 7.55 × 1013 <5 µs [187]
(PEA)2PbI4/2D photoconductor 139.6 37719.6 1.89 × 1015 21 µs / 37 µs [53]
(PEA)2SnI4 photoconductor ~16 1.92 × 1011 0.63 s / 3.6 s [20]
CsPbBr3/2D** photoconductor 10.85 3390 3.06 × 1013 44 µs / 390 µs [194]
MAPbI3/2D photodiode
photoconductor
photoconductor
photoconductor
0.036
4.95
0.0052
22




2 × 1013

320 ms / 330 ms
<0.1 ms
500 µs
<20 ms /<40 ms
[195]
[183]
[196]
[197]
MAPbI3/1D photoconductor
photoconductor
4.95
0.005

0.4
2 × 1013
<0.1 ms
<0.5 ms
[183]
[83]
MAPbI3/1D photodiode 1.32 2.5 × 1012 0.3 ms [198]
CsPbBr3/0D photoconductor
photodiode
0.02092
1.72
16.69
530
4.56 × 108
1.76 × 107
0.2 ms / 1.2 ms
~0.09 ms / ~ 0.1 ms
[199]
[200]
CsPbBr3/0D*** photoconductor 24 ms / 29 ms [201]
Tab.2  Perovskite photodetectors, their dimensionalities, and relevant figures of merit
Fig.16  JV characteristic curves of PSC using different (a) scanning speeds and (b) illumination intensities [207]
Fig.17  p-i-n and n-i-p architectures used in the production of perovskite solar cells. Reprinted with permission from Ref. [10], Copyright 2020, Springer Nature
Fig.18  Different materials used currently in the formation of perovskite solar cell devices [209]
halide perovskite Jsc/(mA·cm2) Voc/V FF/% PCE/% notes Ref.
MAPbIBr2 (3D) 23.58 0.891 60.8 12.79 forward scan [220]
MAPbIBr2 (3D) 23.852 0.891 71.6 15.237 reverse scan [220]
MAPbICl2 (3D) 18.98 0.82 52.98 9.3 DMF solvent/FS [242]
MAPbI3 (3D) 20.62 1.04 69 14.8 low purity PbI2 + MAI in DMF/HCl [243]
MAPbI3 (3D) 22.48 1.04 70 16.4 enhanced crystallization using methanol [244]
MAPbI3 (3D) 20.65 1.078 79 17.6 negligible hysteresis with NOx as HTL [245]
MAPbI3 (3D) 23.36 1.04 69.2 16.79 increased number of nucleation sites [246]
MAPbI3 (3D) 22.6 1.05 72 17.1 >1 cm2 area performance [247]
CsPbI2Br (3D) 15.33 1.22 78.7 14.78 slower perovskite film crystallization [248]
CsPbI2Br (3D) 14.9 1.18 77.2 13.5 shorter reaction time needed [249]
Cs0.05(FA0.83MA0.17)0.95Pb(I0.82Br0.18)3 (3D) 19.02 1.791 74.6 25.2 record for highest efficiency in 3D perovskite [250]
(FAPbI3)x(MAPbI3)1x(3D) 23.7 1.12 76 20.2 uniform film and low recombination [251]
FAPbI3 (3D) 24.5 1.07 74.5 19.5 long carrier lifetime and diffusion [252]
Cs0.05(Ma0.17FA0.83)0.95Pb(I0.83Br0.17)3 (2D/3D) 23.15 1.05 17 less sensitivity to processing conditions [253]
Cs0.05(Ma0.17FA0.83)0.95Pb(I0.83Cl0.17)3 (2D/3D) 17.6 1.05 13.5 great stability for a few days in ambient conditions [253]
MAPbI3:g-C3N4 (2D) 24.31 1.07 74 19.49 DMF solvent [254]
FA0.85MA0.15Pb(I0.85 Br0.15) (2D) 21.8 1.15 74 18.73 additive used was nitrogen-doped reduced graphene oxide [255]
BDAPbI4 (1D) 20.5 0.97 71 14.1 forward Scan [230]
BDAPbI4 (1D) 20.5 0.96 70 13.8 reverse Scan [230]
CsPbI3 (0D) 13.47 1.23 65 10.77 quantum dots solution [256]
MASb2I9 (0D) 1.4 0.74 0.54 best antimony based QD solution [257]
Tab.3  Examples of different halide perovskite-based devices and their respective electrical properties
1 J S Manser, J A Christians, P V Kamat. Intriguing optoelectronic properties of metal halide perovskites. Chemical Reviews, 2016, 116(21): 12956–13008
https://doi.org/10.1021/acs.chemrev.6b00136 pmid: 27327168
2 C Zhou, H Lin, Q He, L Xu, M Worku, M Chaaban, S Lee, X Shi, M H Du, B Ma. Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering R Reports, 2019, 137: 38–65
https://doi.org/10.1016/j.mser.2018.12.001
3 E Shi, Y Gao, B P Finkenauer, Akriti, Coffey A H, Dou L. Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47(16): 6046–6072
https://doi.org/10.1039/C7CS00886D pmid: 29564440
4 E Shi, L Dou. A leap towards high-performance 2D perovskite photodetectors. Trends in Chemistry, 2019, 1(4): 365–367
https://doi.org/10.1016/j.trechm.2019.05.011
5 S Ma, M Cai, T Cheng, X Ding, X Shi, A Alsaedi, T Hayat, Y Ding, Z Tan, S Dai. Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61(10): 1257–1277
https://doi.org/10.1007/s40843-018-9294-5
6 K Hong, Q Van Le, S Y Kim, H W Jang. Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(9): 2189–2209
https://doi.org/10.1039/C7TC05658C
7 L Chao, Z Wang, Y Xia, Y Chen, W Huang. Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27(4): 1091–1100
https://doi.org/10.1016/j.jechem.2017.10.013
8 N G Park. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1903106
https://doi.org/10.1002/aenm.201903106
9 J Zhang, X Yang, H Deng, K Qiao, U Farooq, M Ishaq, F Yi, H Liu, J Tang, H Song. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Letters, 2017, 9(3): 36
https://doi.org/10.1007/s40820-017-0137-5 pmid: 30393731
10 D Forgacs, K Wojciechowski, O Malinkiewicz. Perovskite Photovoltaics: From Laboratory to Industry. In: Petrova-Koch V, Hezel R, Goetzberger A, eds. High-Efficient Low-Cost Photovoltaics. Cham: Springer, 2020, 219–255
11 D P McMeekin, Z Wang, W Rehman, F Pulvirenti, J B Patel, N K Noel, M B Johnston, S R Marder, L M Herz, H J Snaith. Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039
https://doi.org/10.1002/adma.201607039 pmid: 28561912
12 C Liu, Y B Cheng, Z Ge. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653–1687
https://doi.org/10.1039/C9CS00711C pmid: 32134426
13 P Tyagi, S M Arveson, W A Tisdale. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. Journal of Physical Chemistry Letters, 2015, 6(10): 1911–1916
https://doi.org/10.1021/acs.jpclett.5b00664 pmid: 26263268
14 S D Stranks, G E Eperon, G Grancini, C Menelaou, M J Alcocer, T Leijtens, L M Herz, A Petrozza, H J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
https://doi.org/10.1126/science.1243982 pmid: 24136964
15 C C Stoumpos, C D Malliakas, M G Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
https://doi.org/10.1021/ic401215x pmid: 23834108
16 E Edri, S Kirmayer, M Kulbak, G Hodes, D Cahen. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. Journal of Physical Chemistry Letters, 2014, 5(3): 429–433
https://doi.org/10.1021/jz402706q pmid: 26276587
17 N K Noel, S D Stranks, A Abate, C Wehrenfennig, S Guarnera, A A Haghighirad, A Sadhanala, G E Eperon, S K Pathak, M B Johnston, A Petrozza, L M Herz, H J Snaith. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(9): 3061–3068
https://doi.org/10.1039/C4EE01076K
18 K W Tan, D T Moore, M Saliba, H Sai, L A Estroff, T Hanrath, H J Snaith, U Wiesner. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano, 2014, 8(5): 4730–4739
https://doi.org/10.1021/nn500526t pmid: 24684494
19 V D’Innocenzo, G Grancini, M J Alcocer, A R S Kandada, S D Stranks, M M Lee, G Lanzani, H J Snaith, A Petrozza. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Communications, 2014, 5(1): 3586
https://doi.org/10.1038/ncomms4586 pmid: 24710005250
20 L Qian, Y Sun, M Wu, C Li, D Xie, L Ding, G Shi. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale, 2018, 10(15): 6837–6843
https://doi.org/10.1039/C8NR00914G pmid: 29616272
21 A Hossain, S Roy, K Sakthipandi. The external and internal influences on the tuning of the properties of perovskites: an overview. Ceramics International, 2019, 45(4): 4152–4166
https://doi.org/10.1016/j.ceramint.2018.11.102
22 N Kitazawa, Y Watanabe, Y Nakamura. Optical properties of CH3NH3PbX3 (X= halogen) and their mixed-halide crystals. Journal of Materials Science, 2002, 37(17): 3585–3587
https://doi.org/10.1023/A:1016584519829
23 J H Noh, S H Im, J H Heo, T N Mandal, S I Seok. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Letters, 2013, 13(4): 1764–1769
https://doi.org/10.1021/nl400349b pmid: 23517331
24 L Protesescu, S Yakunin, M I Bodnarchuk, F Krieg, R Caputo, C H Hendon, R X Yang, A Walsh, M V Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696
https://doi.org/10.1021/nl5048779 pmid: 25633588
25 A Dubey, N Adhikari, S Mabrouk, F Wu, K Chen, S Yang, Q Qiao. A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(6): 2406–2431
https://doi.org/10.1039/C7TA08277K
26 P Wang, X Zhang, Y Zhou, Q Jiang, Q Ye, Z Chu, X Li, X Yang, Z Yin, J You. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9(1): 2225
https://doi.org/10.1038/s41467-018-04636-4 pmid: 29884815
27 A Chilvery, S Das, P Guggilla, C Brantley, A Sunda-Meya. A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17(1): 650–658
https://doi.org/10.1080/14686996.2016.1226120 pmid: 27877911
28 W Kong, G Wang, J Zheng, H Hu, H Chen, Y Li, M Hu, X Zhou, C Liu, B N Chandrashekar, A Amini, J Wang, B Xu, C Cheng. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate. Solar RRL, 2018, 2(3): 1700214
https://doi.org/10.1002/solr.201700214
29 C Li, J Yin, R Chen, X Lv, X Feng, Y Wu, J Cao. Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with>18% efficiency. Journal of the American Chemical Society, 2019, 141(15): 6345–6351
https://doi.org/10.1021/jacs.9b01305 pmid: 30875223
30 S Sun, D Yuan, Y Xu, A Wang, Z Deng. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 2016, 10(3): 3648–3657
https://doi.org/10.1021/acsnano.5b08193 pmid: 26886173
31 C Lan, Z Zhou, R Wei, J C Ho. Two-dimensional perovskite materials: from synthesis to energy-related applications. Materials Today Energy, 2019, 11: 61–82
https://doi.org/10.1016/j.mtener.2018.10.008
32 J Even, L Pedesseau, C Katan. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem, 2014, 15(17): 3733–3741
https://doi.org/10.1002/cphc.201402428 pmid: 25196218
33 M Green, A Ho-Baillie, H Snaith. The emergence of perovskite solar cells. Nature Photonics, 2014, 8: 506–514
https://doi.org/10.1038/nphoton.2014.134
34 M Ahmadi, T Wu, B Hu. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242
https://doi.org/10.1002/adma.201605242 pmid: 28910505
35 P K Nayak, D T Moore, B Wenger, S Nayak, A A Haghighirad, A Fineberg, N K Noel, O G Reid, G Rumbles, P Kukura, K A Vincent, H J Snaith. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303
https://doi.org/10.1038/ncomms13303 pmid: 27830749
36 K Wu, A Bera, C Ma, Y Du, Y Yang, L Li, T Wu. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Physical Chemistry Chemical Physics, 2014, 16(41): 22476–22481
https://doi.org/10.1039/C4CP03573A pmid: 25247715
37 G C Papavassiliou, I B Koutselas. Structural, optical and related properties of some natural three-and lower-dimensional semiconductor systems. Synthetic Metals, 1995, 71(1–3): 1713–1714
https://doi.org/10.1016/0379-6779(94)03017-Z
38 M Mehrabian, S Dalir, G Mahmoudi, B Miroslaw, M G Babashkina, A V Dektereva, D A Safin. A highly stable all-inorganic CsPbBr3 perovskite solar cell. European Journal of Inorganic Chemistry, 2019, 2019(32): 3699–3703
https://doi.org/10.1002/ejic.201900562
39 Y Ling, Z Yuan, Y Tian, X Wang, J C Wang, Y Xin, K Hanson, B Ma, H Gao. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Advanced Materials, 2016, 28(2): 305–311
https://doi.org/10.1002/adma.201503954 pmid: 26572239
40 A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r pmid: 19366264
41 Y Hu, L M Spies, D Alonso-Álvarez, P Mocherla, H Jones, J Hanisch, T Bein, P R F Barnes, P Docampo. Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(44): 22215–22225
https://doi.org/10.1039/C8TA05475D
42 X Zhang, X Ren, B Liu, R Munir, X Zhu, D Yang, J Li, Y Liu, D M Smilgies, R Li, Z Yang, T Niu, X Wang, A Amassian, K Zhao, S F Liu. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy & Environmental Science, 2017, 10(10): 2095–2102
https://doi.org/10.1039/C7EE01145H
43 Y Bekenstein, B A Koscher, S W Eaton, P Yang, A P Alivisatos. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. Journal of the American Chemical Society, 2015, 137(51): 16008–16011
https://doi.org/10.1021/jacs.5b11199 pmid: 26669631
44 J Shamsi, Z Dang, P Bianchini, C Canale, F D Stasio, R Brescia, M Prato, L Manna. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society, 2016, 138(23): 7240–7243
https://doi.org/10.1021/jacs.6b03166 pmid: 27228475
45 Z Yuan, Y Shu, Y Tian, Y Xin, B Ma. A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks. Chemical Communications, 2015, 51(91): 16385–16388
https://doi.org/10.1039/C5CC06750B pmid: 26411807
46 J A Sichert, Y Tong, N Mutz, M Vollmer, S Fischer, K Z Milowska, R García Cortadella, B Nickel, C Cardenas-Daw, J K Stolarczyk, A S Urban, J Feldmann. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Letters, 2015, 15(10): 6521–6527
https://doi.org/10.1021/acs.nanolett.5b02985 pmid: 26327242
47 L Dou, A B Wong, Y Yu, M Lai, N Kornienko, S W Eaton, A Fu, C G Bischak, J Ma, T Ding, N S Ginsberg, L W Wang, A P Alivisatos, P Yang. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521
https://doi.org/10.1126/science.aac7660 pmid: 26404831
48 V A Hintermayr, A F Richter, F Ehrat, M Döblinger, W Vanderlinden, J A Sichert, Y Tong, L Polavarapu, J Feldmann, A S Urban. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Advanced Materials, 2016, 28(43): 9478–9485
https://doi.org/10.1002/adma.201602897 pmid: 27620530
49 S T Ha, X Liu, Q Zhang, D Giovanni, T C Sum, Q Xiong. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Advanced Optical Materials, 2014, 2(9): 838–844
https://doi.org/10.1002/adom.201400106
50 L C Schmidt, A Pertegás, S González-Carrero, O Malinkiewicz, S Agouram, G Mínguez Espallargas, H J Bolink, R E Galian, J Pérez-Prieto. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society, 2014, 136(3): 850–853
https://doi.org/10.1021/ja4109209 pmid: 24387158
51 C Ma, D Shen, T W Ng, M F Lo, C S Lee. 2D perovskites with short interlayer distance for high-performance solar cell application. Advanced Materials, 2018, 30(22): 1800710
https://doi.org/10.1002/adma.201800710 pmid: 29665101
52 D Liang, Y Peng, Y Fu, M J Shearer, J Zhang, J Zhai, Y Zhang, R J Hamers, T L Andrew, S Jin. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10(7): 6897–6904
https://doi.org/10.1021/acsnano.6b02683 pmid: 27336850
53 Y Liu, H Ye, Y Zhang, K Zhao, Z Yang, Y Yuan, H Wu, G Zhao, Z Yang, J Tang, Z Xu, S F Liu. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter, 2019, 1(2): 465–480
https://doi.org/10.1016/j.matt.2019.04.002
54 T Niu, H Ren, B Wu, Y Xia, X Xie, Y Yang, X Gao, Y Chen, W Huang. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. Journal of Physical Chemistry Letters, 2019, 10(10): 2349–2356
https://doi.org/10.1021/acs.jpclett.9b00750 pmid: 31007024
55 X Zhang, R Munir, Z Xu, Y Liu, H Tsai, W Nie, J Li, T Niu, D M Smilgies, M G Kanatzidis, A D Mohite, K Zhao, A Amassian, S F Liu. Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Advanced Materials, 2018, 30(21): 1707166
https://doi.org/10.1002/adma.201707166 pmid: 29611240
56 W Ke, L Mao, C C Stoumpos, J Hoffman, I Spanopoulos, A D Mohite, M G Kanatzidis. Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Advanced Energy Materials, 2019, 9(10): 1803384
https://doi.org/10.1002/aenm.201803384
57 M M Hasan, C Clegg, M Manning, A El Ghanam, C Su, M D Harding, C Bennett, I G Hill, G I Koleilat. Stable efficient methylammonium lead iodide thin film photodetectors with highly oriented millimeter-sized crystal grains. ACS Photonics, 2020, 7(1): 57–67
58 K Wang, C Wu, D Yang, Y Jiang, S Priya. Quasi-two-dimensional halide perovskite single crystal photodetector. ACS Nano, 2018, 12(5): 4919–4929
https://doi.org/10.1021/acsnano.8b01999 pmid: 29683643
59 L N Quan, M Yuan, R Comin, O Voznyy, E M Beauregard, S Hoogland, A Buin, A R Kirmani, K Zhao, A Amassian, D H Kim, E H Sargent. Ligand-stabilized reduced-dimensionality perovskites. Journal of the American Chemical Society, 2016, 138(8): 2649–2655
https://doi.org/10.1021/jacs.5b11740 pmid: 26841130
60 H Tsai, W Nie, J C Blancon, C C Stoumpos, R Asadpour, B Harutyunyan, A J Neukirch, R Verduzco, J J Crochet, S Tretiak, L Pedesseau, J Even, M A Alam, G Gupta, J Lou, P M Ajayan, M J Bedzyk, M G Kanatzidis, A D Mohite. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316
https://doi.org/10.1038/nature18306 pmid: 27383783
61 L K Ono, Y Qi. Research progress on organic–inorganic halide perovskite materials and solar cells. Journal of Physics. D, Applied Physics, 2018, 51(9): 093001
https://doi.org/10.1088/1361-6463/aaa727
62 H Ren, S Yu, L Chao, Y Xia, Y Sun, S Zuo, F Li, T Niu, Y Yang, H Ju, B Li, H Du, X Gao, J Zhang, J Wang, L Zhang, Y Chen, W Huang. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020, 14(3): 154–163
https://doi.org/10.1038/s41566-019-0572-6
63 C C Stoumpos, D H Cao, D J Clark, J Young, J M Rondinelli, J I Jang, J T Hupp, M G Kanatzidis. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867
https://doi.org/10.1021/acs.chemmater.6b00847
64 G Wu, X Li, J Zhou, J Zhang, X Zhang, X Leng, P Wang, M Chen, D Zhang, K Zhao, S F Liu, H Zhou, Y Zhang. Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Advanced Materials, 2019, 31(42): 1903889
https://doi.org/10.1002/adma.201903889 pmid: 31475406
65 L Ma, M G Ju, J Dai, X C Zeng. Tin and germanium based two-dimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10(24): 11314–11319
https://doi.org/10.1039/C8NR03589J pmid: 29897093
66 P Cheng, T Wu, J Liu, W Q Deng, K Han. Lead-free, two-dimensional mixed germanium and tin perovskites. Journal of Physical Chemistry Letters, 2018, 9(10): 2518–2522
https://doi.org/10.1021/acs.jpclett.8b00871 pmid: 29699393
67 J Byun, H Cho, C Wolf, M Jang, A Sadhanala, R H Friend, H Yang, T W Lee. Efficient visible quasi-2D perovskite light-emitting diodes. Advanced Materials, 2016, 28(34): 7515–7520
https://doi.org/10.1002/adma.201601369 pmid: 27334788
68 C M M Soe, C C Stoumpos, M Kepenekian, B Traoré, H Tsai, W Nie, B Wang, C Katan, R Seshadri, A D Mohite, J Even, T J Marks, M G Kanatzidis. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. Journal of the American Chemical Society, 2017, 139(45): 16297–16309
https://doi.org/10.1021/jacs.7b09096 pmid: 29095597
69 N Wang, L Cheng, R Ge, S Zhang, Y Miao, W Zou, C Yi, Y Sun, Y Cao, R Yang, Y Wei, Q Guo, Y Ke, M Yu, Y Jin, Y Liu, Q Ding, D Di, L Yang, G Xing, H Tian, C Jin, F Gao, R H Friend, J Wang, W Huang. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704
https://doi.org/10.1038/nphoton.2016.185
70 H Zheng, G Liu, L Zhu, J Ye, X Zhang, A Alsaedi, T Hayat, X Pan, S Dai. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Advanced Energy Materials, 2018, 8(21): 1800051
https://doi.org/10.1002/aenm.201800051
71 K Yao, X Wang, Y X Xu, F Li, L Zhou. Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chemistry of Materials, 2016, 28(9): 3131–3138
https://doi.org/10.1021/acs.chemmater.6b00711
72 H Lai, B Kan, T Liu, N Zheng, Z Xie, T Zhou, X Wan, X Zhang, Y Liu, Y Chen. Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. Journal of the American Chemical Society, 2018, 140(37): 11639–11646
https://doi.org/10.1021/jacs.8b04604 pmid: 30157626
73 A H Proppe, R Quintero-Bermudez, H Tan, O Voznyy, S O Kelley, E H Sargent. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. Journal of the American Chemical Society, 2018, 140(8): 2890–2896
https://doi.org/10.1021/jacs.7b12551 pmid: 29397693
74 C C Stoumpos, C M M Soe, H Tsai, W Nie, J C Blancon, D H Cao, F Liu, B Traoré, C Katan, J Even, A D Mohite, M G Kanatzidis. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2-(CH3NH3)4Pb5I16. Chem, 2017, 2(3): 427–440
https://doi.org/10.1016/j.chempr.2017.02.004
75 A Fraccarollo, L Canti, L Marchese, M Cossi. First principles study of 2D layered organohalide tin perovskites. Journal of Chemical Physics, 2017, 146(23): 234703
https://doi.org/10.1063/1.4985054 pmid: 28641434
76 I B Koutselas, L Ducasse, G C Papavassiliou. Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units. Journal of Physics Condensed Matter, 1996, 8(9): 1217–1227
https://doi.org/10.1088/0953-8984/8/9/012
77 J Liu, J Leng, K Wu, J Zhang, S Jin. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. Journal of the American Chemical Society, 2017, 139(4): 1432–1435
https://doi.org/10.1021/jacs.6b12581 pmid: 28094931
78 M Yuan, L N Quan, R Comin, G Walters, R Sabatini, O Voznyy, S Hoogland, Y Zhao, E M Beauregard, P Kanjanaboos, Z Lu, D H Kim, E H Sargent. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877
https://doi.org/10.1038/nnano.2016.110 pmid: 27347835
79 H C Kwon, W Yang, D Lee, J Ahn, E Lee, S Ma, K Kim, S C Yun, J Moon. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber. ACS Nano, 2018, 12(5): 4233–4245
https://doi.org/10.1021/acsnano.7b07559 pmid: 29676893
80 W Du, S Zhang, J Shi, J Chen, Z Wu, Y Mi, Z Liu, Y Li, X Sui, R Wang, X Qiu, T Wu, Y Xiao, Q Zhang, X Liu. Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics, 2018, 5(5): 2051–2059
https://doi.org/10.1021/acsphotonics.7b01593
81 X Xu, X Zhang, W Deng, J Jie, X Zhang. 1D organic–inorganic hybrid perovskite micro/nanocrystals: fabrication, assembly, and optoelectronic applications. Small Methods, 2018, 2(7): 1700340
https://doi.org/10.1002/smtd.201700340
82 S T Ha, R Su, J Xing, Q Zhang, Q Xiong. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536
https://doi.org/10.1039/C6SC04474C pmid: 28553484
83 E Horváth, M Spina, Z Szekrényes, K Kamarás, R Gaal, D Gachet, L Forró. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Letters, 2014, 14(12): 6761–6766
https://doi.org/10.1021/nl5020684 pmid: 25354371
84 D Zhang, S W Eaton, Y Yu, L Dou, P Yang. Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society, 2015, 137(29): 9230–9233
https://doi.org/10.1021/jacs.5b05404 pmid: 26181343
85 J Xing, X F Liu, Q Zhang, S T Ha, Y W Yuan, C Shen, T C Sum, Q Xiong. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Letters, 2015, 15(7): 4571–4577
https://doi.org/10.1021/acs.nanolett.5b01166 pmid: 26043362
86 L J Chen, C R Lee, Y J Chuang, Z H Wu, C Chen. Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Journal of Physical Chemistry Letters, 2016, 7(24): 5028–5035
https://doi.org/10.1021/acs.jpclett.6b02344 pmid: 27973874
87 A B Wong, M Lai, S W Eaton, Y Yu, E Lin, L Dou, A Fu, P Yang. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Letters, 2015, 15(8): 5519–5524
https://doi.org/10.1021/acs.nanolett.5b02082 pmid: 26192740
88 P Chen, Y Bai, M Lyu, J H Yun, M Hao, L Wang. Progress and perspective in low-dimensional metal halide perovskites for optoelectronic applications. Solar RRL, 2018, 2(3): 1700186
https://doi.org/10.1002/solr.201700186
89 Z Yuan, C Zhou, Y Tian, Y Shu, J Messier, J C Wang, L J van de Burgt, K Kountouriotis, Y Xin, E Holt, K Schanze, R Clark, T Siegrist, B Ma. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051
https://doi.org/10.1038/ncomms14051 pmid: 28051092
90 M H Jung. Broadband white light emission from one-dimensional zigzag edge-sharing perovskite. New Journal of Chemistry, 2020, 44(1): 171–180
https://doi.org/10.1039/C9NJ04758A
91 X Li, Y Wu, S Zhang, B Cai, Y Gu, J Song, H Zeng. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2435–2445
https://doi.org/10.1002/adfm.201600109
92 Q Zhou, Z Bai, W G Lu, Y Wang, B Zou, H Zhong. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016, 28(41): 9163–9168
https://doi.org/10.1002/adma.201602651 pmid: 27571569
93 L Zhao, Y W Yeh, N L Tran, F Wu, Z Xiao, R A Kerner, Y L Lin, G D Scholes, N Yao, B P Rand. In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices. ACS Nano, 2017, 11(4): 3957–3964
https://doi.org/10.1021/acsnano.7b00404 pmid: 28332818
94 J Liu, F Hu, Y Zhou, C Zhang, X Wang, M Xiao. Polarized emission from single perovskite FAPbBr3 nanocrystals. Journal of Luminescence, 2020, 221: 117032
https://doi.org/10.1016/j.jlumin.2020.117032
95 M Nikl, E Mihokova, K Nitsch, F Somma, C Giampaolo, G P Pazzi, P Fabeni, S Zazubovich. Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306(5–6): 280–284
https://doi.org/10.1016/S0009-2614(99)00477-7
96 D Han, H Shi, W Ming, C Zhou, B Ma, B Saparov, Y Z Ma, S Chen, M H Du. Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2018, 6(24): 6398–6405
https://doi.org/10.1039/C8TC01291A
97 L J Xu, C Z Sun, H Xiao, Y Wu, Z N Chen. Green-light-emitting diodes based on tetrabromide manganese (II) complex through solution process. Advanced Materials, 2017, 29(10): 1605739
https://doi.org/10.1002/adma.201605739 pmid: 28009462
98 M Worku, L J Xu, M Chaaban, A Ben-Akacha, B Ma. Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials. APL Materials, 2020, 8(1): 010902
https://doi.org/10.1063/1.5140441
99 J C Hebig, I Kühn, J Flohre, T Kirchartz. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters, 2016, 1(1): 309–314
https://doi.org/10.1021/acsenergylett.6b00170
100 S Öz, J C Hebig, E Jung, T Singh, A Lepcha, S Olthof, F Jan, Y Gao, R German, P H M van Loosdrecht, K Meerholz, T Kirchartz, S Mathur. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Solar Energy Materials and Solar Cells, 2016, 158: 195–201
https://doi.org/10.1016/j.solmat.2016.01.035
101 J K Pious, M L Lekshmi, C Muthu, R B Rakhi, V C Nair. Zero-dimensional methylammonium bismuth iodide-based lead-free perovskite capacitor. ACS Omega, 2017, 2(9): 5798–5802
https://doi.org/10.1021/acsomega.7b00973 pmid: 31457838
102 S Sun, T Salim, N Mathews, M Duchamp, C Boothroyd, G Xing, T C Sum, Y M Lam. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407
https://doi.org/10.1039/C3EE43161D
103 C S Ponseca Jr, T J Savenije, M Abdellah, K Zheng, A Yartsev, T Pascher, T Harlang, P Chabera, T Pullerits, A Stepanov, J P Wolf, V Sundström. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192
https://doi.org/10.1021/ja412583t pmid: 24654882
104 C R Dong, Y Wang, K Zhang, H Zeng. Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2(1): 100026
https://doi.org/10.1016/j.enchem.2020.100026
105 S J Sweeney, J Mukherjee. Optoelectronic Devices and Materials. In: Kasap S, Capper P, eds. Springer Handbook of Electronic and Photonic Materials. Cham: Springer, 2017
106 G E Eperon, T Leijtens, K A Bush, R Prasanna, T Green, J T Wang, D P McMeekin, G Volonakis, R L Milot, R May, A Palmstrom, D J Slotcavage, R A Belisle, J B Patel, E S Parrott, R J Sutton, W Ma, F Moghadam, B Conings, A Babayigit, H G Boyen, S Bent, F Giustino, L M Herz, M B Johnston, M D McGehee, H J Snaith. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865
https://doi.org/10.1126/science.aaf9717 pmid: 27856902
107 V Sarritzu, N Sestu, D Marongiu, X Chang, Q Wang, S Masi, S Colella, A Rizzo, A Gocalinska, E Pelucchi, M L Mercuri, F Quochi, M Saba, A Mura, G Bongiovanni. Direct or indirect bandgap in hybrid lead halide perovskites? Advanced Optical Materials, 2018, 6(10): 1701254
https://doi.org/10.1002/adom.201701254
108 E M Hutter, M C Gélvez-Rueda, A Osherov, V Bulović, F C Grozema, S D Stranks, T J Savenije. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Materials, 2017, 16(1): 115–120
https://doi.org/10.1038/nmat4765 pmid: 27698354
109 R Brenes, D Guo, A Osherov, N K Noel, C Eames, E M Hutter, S K Pathak, F Niroui, R H Friend, M S Islam, H J Snaith, V Bulović, T J Savenije, S D Stranks. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017, 1(1): 155–167
https://doi.org/10.1016/j.joule.2017.08.006
110 M Saba, M Cadelano, D Marongiu, F Chen, V Sarritzu, N Sestu, C Figus, M Aresti, R Piras, A G Lehmann, C Cannas, A Musinu, F Quochi, A Mura, G Bongiovanni. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049
https://doi.org/10.1038/ncomms6049 pmid: 25266869
111 S X Tao, X Cao, P A Bobbert. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Scientific Reports, 2017, 7(1): 14386
https://doi.org/10.1038/s41598-017-14435-4 pmid: 29084980
112 A R Srimath Kandada, S Neutzner, V D’Innocenzo, F Tassone, M Gandini, Q A Akkerman, M Prato, L Manna, A Petrozza, G Lanzani. Nonlinear carrier interactions in lead halide perovskites and the role of defects. Journal of the American Chemical Society, 2016, 138(41): 13604–13611
https://doi.org/10.1021/jacs.6b06463 pmid: 27665763
113 W Ke, M G Kanatzidis. Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10(1): 965
https://doi.org/10.1038/s41467-019-08918-3 pmid: 30814499
114 P Gao, M Grätzel, M K Nazeeruddin. Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science, 2014, 7(8): 2448–2463
https://doi.org/10.1039/C4EE00942H
115 S A Kulkarni, T Baikie, P P Boix, N Yantara, N Mathews, S Mhaisalkar. Band-gap tuning of lead halide perovskites using a sequential deposition process. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(24): 9221–9225
https://doi.org/10.1039/C4TA00435C
116 G E Eperon, S D Stranks, C Menelaou, M B Johnston, L M Herz, H J Snaith. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 2014, 7(3): 982
https://doi.org/10.1039/c3ee43822h
117 I Levchuk, A Osvet, X Tang, M Brandl, J D Perea, F Hoegl, G J Matt, R Hock, M Batentschuk, C J Brabec. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X= Cl, Br, I) colloidal nanocrystals. Nano Letters, 2017, 17(5): 2765–2770
https://doi.org/10.1021/acs.nanolett.6b04781 pmid: 28388067
118 S Wang, T Sakurai, W Wen, Y Qi. Energy level alignment at interfaces in metal halide perovskite solar cells. Advanced Materials Interfaces, 2018, 5(22): 1800260
https://doi.org/10.1002/admi.201800260
119 G Kieslich, S Sun, A K Cheetham. An extended tolerance factor approach for organic–inorganic perovskites. Chemical Science (Cambridge), 2015, 6(6): 3430–3433
https://doi.org/10.1039/C5SC00961H pmid: 28706705
120 M R Filip, G E Eperon, H J Snaith, F Giustino. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications, 2014, 5(1): 5757
https://doi.org/10.1038/ncomms6757 pmid: 25502506
121 Q Ou, X Bao, Y Zhang, H Shao, G Xing, X Li, L Shao, Q Bao. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Materials Science, 2019, 1(4): 268–287
https://doi.org/10.1016/j.nanoms.2019.10.004
122 M D Smith, L Pedesseau, M Kepenekian, I C Smith, C Katan, J Even, H I Karunadasa. Decreasing the electronic confinement in layered perovskites through intercalation. Chemical Science (Cambridge), 2017, 8(3): 1960–1968
https://doi.org/10.1039/C6SC02848A pmid: 28451311
123 M Fox. Optical Properties of Solids. Oxford: Oxford University Press, 2001
124 D B Mitzi. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M= Ge, Sn, Pb). Chemistry of Materials, 1996, 8(3): 791–800
https://doi.org/10.1021/cm9505097
125 M Pandey, K W Jacobsen, K S Thygesen. Band gap tuning and defect tolerance of atomically thin two-dimensional organic-inorganic halide perovskites. Journal of Physical Chemistry Letters, 2016, 7(21): 4346–4352
https://doi.org/10.1021/acs.jpclett.6b01998 pmid: 27758095
126 G Lanty, K Jemli, Y Wei, J Leymarie, J Even, J S Lauret, E Deleporte. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudobinary alloys. Journal of Physical Chemistry Letters, 2014, 5(22): 3958–3963
https://doi.org/10.1021/jz502086e pmid: 26276477
127 M C Weidman, M Seitz, S D Stranks, W A Tisdale. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano, 2016, 10(8): 7830–7839
https://doi.org/10.1021/acsnano.6b03496 pmid: 27471862
128 K Tanaka, T Kondo. Bandgap and exciton binding energies in lead-iodide based natural quantum-well crystals. Science and Technology of Advanced Materials, 2003, 4(6): 599–604
https://doi.org/10.1016/j.stam.2003.09.019
129 P Vashishtha, D Z Metin, M E Cryer, K Chen, J M Hodgkiss, N Gaston, J E Halpert. Shape-, size-, and composition-controlled thallium lead halide perovskite nanowires and nanocrystals with tunable band gaps. Chemistry of Materials, 2018, 30(9): 2973–2982
https://doi.org/10.1021/acs.chemmater.8b00421
130 T Qiu, Y Hu, F Xu, Z Yan, F Bai, G Jia, S Zhang. Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10(45): 20963–20989
https://doi.org/10.1039/C8NR05862H pmid: 30418466
131 J H Im, C R Lee, J W Lee, S W Park, N G Park. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088–4093
https://doi.org/10.1039/c1nr10867k pmid: 21897986
132 G Li, Z Liu, Q Huang, Y Gao, M Regula, D Wang, L Q Chen, D Wang. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nature Energy, 2018, 3(12): 1076–1083
https://doi.org/10.1038/s41560-018-0276-z
133 J Zhang, D Bai, Z Jin, H Bian, K Wang, J Sun, Q Wang, S F Liu. 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Advanced Energy Materials, 2018, 8(15): 1703246
https://doi.org/10.1002/aenm.201703246
134 C Wehrenfennig, G E Eperon, M B Johnston, H J Snaith, L M Herz. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584–1589
https://doi.org/10.1002/adma.201305172 pmid: 24757716
135 J Verma, S M Islam, A Verma, V Protasenko, D Jena. Nitride LEDs Based on Quantum Wells and Quantum Dots. In: Huang J J, Kuo H C, Shen S C, eds. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, 2nd edition. Cambridge: Woodhead Publishing, 2018, 377–413
136 D Meggiolaro, S G Motti, E Mosconi, A J Barker, J Ball, C Andrea Riccardo Perini, F Deschler, A Petrozza, F De Angelis. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713
https://doi.org/10.1039/C8EE00124C
137 L M Herz. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 2016, 67(1): 65–89
https://doi.org/10.1146/annurev-physchem-040215-112222 pmid: 26980309
138 G Xing, B Wu, X Wu, M Li, B Du, Q Wei, J Guo, E K Yeow, T C Sum, W Huang. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8(1): 14558
https://doi.org/10.1038/ncomms14558 pmid: 28239146
139 G Xing, N Mathews, S Sun, S S Lim, Y M Lam, M Gratzel, S Mhaisalkar, T C Sum. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347
https://doi.org/10.1126/science.1243167 pmid: 24136965
140 W Nie, H Tsai, R Asadpour, J C Blancon, A J Neukirch, G Gupta, J J Crochet, M Chhowalla, S Tretiak, M A Alam, H L Wang, A D Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525
https://doi.org/10.1126/science.aaa0472 pmid: 25635093
141 X Wu, M T Trinh, D Niesner, H Zhu, Z Norman, J S Owen, O Yaffe, B J Kudisch, X Y Zhu. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089–2096
https://doi.org/10.1021/ja512833n pmid: 25602495
142 K Zheng, K Zidek, M Abdellah, J Chen, P Chábera, W Zhang, M J Al-Marri, T Pullerits. High excitation intensity opens a new trapping channel in organic–inorganic hybrid perovskite nanoparticles. ACS Energy Letters, 2016, 1(6): 1154–1161
https://doi.org/10.1021/acsenergylett.6b00352
143 D J Freppon, L Men, S J Burkhow, J W Petrich, J Vela, E A Smith. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(1): 118–126
https://doi.org/10.1039/C6TC03886G
144 H Jin, E Debroye, M Keshavarz, I G Scheblykin, M B J Roeffaers, J Hofkens, J A Steele. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons, 2020, 7(2): 397–410
https://doi.org/10.1039/C9MH00500E
145 L Yang, C Dall’Agnese, Y Dall’Agnese, G Chen, Y Gao, Y Sanehira, A K Jena, X F Wang, Y Gogotsi, T Miyasaka. Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Advanced Functional Materials, 2019, 29(46): 1905694
https://doi.org/10.1002/adfm.201905694
146 Q Lin, A Armin, R C R Nagiri, P L Burn, P Meredith. Electro-optics of perovskite solar cells. Nature Photonics, 2015, 9(2): 106–112
https://doi.org/10.1038/nphoton.2014.284
147 J Even, L Pedesseau, C Katan. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. Journal of Physical Chemistry C, 2014, 118(22): 11566–11572
https://doi.org/10.1021/jp503337a
148 K Galkowski, A Mitioglu, A Miyata, P Plochocka, O Portugall, G E Eperon, J T W Wang, T Stergiopoulos, S D Stranks, H J Snaith, R J Nicholas. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy & Environmental Science, 2016, 9(3): 962–970
https://doi.org/10.1039/C5EE03435C
149 C M Mauck, W A Tisdale. Excitons in 2D organic–inorganic halide perovskites. Trends in Chemistry, 2019, 4(1): 380–393
150 K T Munson, E R Kennehan, G S Doucette, J B Asbury. Dynamic disorder dominates delocalization, transport, and recombination in halide perovskites. Chem, 2018, 4(12): 2826–2843
https://doi.org/10.1016/j.chempr.2018.09.001
151 Y H Kim, J S Kim, T W Lee. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes. Advanced Materials, 2019, 31(47): 1804595
https://doi.org/10.1002/adma.201804595 pmid: 30556297
152 Y H Kim, C Wolf, H Kim, T W Lee. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy, 2018, 52: 329–335
https://doi.org/10.1016/j.nanoen.2018.07.030
153 E Shi, S Deng, B Yuan, Y Gao, Akriti, Yuan L, Davis C S, Zemlyanov D, Yu Y, Huang L, Dou L. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites. ACS Nano, 2019, 13(2): 1635–1644
https://doi.org/10.1021/acsnano.8b07631 pmid: 30812095
154 B Cheng, T Y Li, P C Wei, J Yin, K T Ho, J R D Retamal, O F Mohammed, J H He. Layer-edge device of two-dimensional hybrid perovskites. Nature Communications, 2018, 9(1): 5196
https://doi.org/10.1038/s41467-018-07656-2 pmid: 30518919
155 S Thomson. Measuring Charge Carrier Lifetime in Halide Perovskite Using Time-Resolved Photoluminescence Spectroscopy. Edinburgh Instruments, 2018, 23
156 Q Han, S H Bae, P Sun, Y T Hsieh, Y M Yang, Y S Rim, H Zhao, Q Chen, W Shi, G Li, Y Yang. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Advanced Materials, 2016, 28(11): 2253–2258
https://doi.org/10.1002/adma.201505002 pmid: 26790006
157 B Yang, K Han. Charge-carrier dynamics of lead-free halide perovskite nanocrystals. Accounts of Chemical Research, 2019, 52(11): 3188–3198
https://doi.org/10.1021/acs.accounts.9b00422 pmid: 31664815
158 R Zhi, J Hu, S Yang, C Perumal Veeramalai, Z Zhang, M I Saleem, M Sulaman, Y Tang, B Zou. A facile method to synthesize two-dimensional CsPb2Br5 nano-/micro-sheets for high-performance solution-processed photodetectors. Journal of Alloys and Compounds, 2020, 824: 153970
https://doi.org/10.1016/j.jallcom.2020.153970
159 J V Passarelli, D J Fairfield, N A Sather, M P Hendricks, H Sai, C L Stern, S I Stupp. Enhanced out-of-plane conductivity and photovoltaic performance in n = 1 layered perovskites through organic cation design. Journal of the American Chemical Society, 2018, 140(23): 7313–7323
https://doi.org/10.1021/jacs.8b03659 pmid: 29869499
160 W T M Van Gompel, R Herckens, K Van Hecke, B Ruttens, J D’Haen, L Lutsen, D Vanderzande. Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes via self-assembly. Chemical Communications (Cambridge), 2019, 55(17): 2481–2484
https://doi.org/10.1039/C8CC09955C pmid: 30734783
161 M C Gélvez-Rueda, M B Fridriksson, R K Dubey, W F Jager, W van der Stam, F C Grozema. Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nature Communications, 2020, 11(1): 1901
https://doi.org/10.1038/s41467-020-15869-7 pmid: 32312981
162 Y Yuan, J Chae, Y Shao, Q Wang, Z Xiao, A Centrone, J Huang. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials, 2015, 5(15): 1500615
https://doi.org/10.1002/aenm.201500615
163 Z Xiao, Y Yuan, Y Shao, Q Wang, Q Dong, C Bi, P Sharma, A Gruverman, J Huang. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials, 2015, 14(2): 193–198
https://doi.org/10.1038/nmat4150 pmid: 25485985
164 E J Juarez-Perez, R S Sanchez, L Badia, G Garcia-Belmonte, Y S Kang, I Mora-Sero, J Bisquert. Photoinduced giant dielectric constant in lead halide perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(13): 2390–2394
https://doi.org/10.1021/jz5011169 pmid: 26279565
165 Y Deng, Z Xiao, J Huang. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721
https://doi.org/10.1002/aenm.201500721
166 Y Zhao, J Wei, H Li, Y Yan, W Zhou, D Yu, Q Zhao. A polymer scaffold for self-healing perovskite solar cells. Nature Communications, 2016, 7(1): 10228
https://doi.org/10.1038/ncomms10228 pmid: 26732479
167 W Nie, J C Blancon, A J Neukirch, K Appavoo, H Tsai, M Chhowalla, M A Alam, M Y Sfeir, C Katan, J Even, S Tretiak, J J Crochet, G Gupta, A D Mohite. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nature Communications, 2016, 7(1): 11574
https://doi.org/10.1038/ncomms11574 pmid: 27181192
168 E T Hoke, D J Slotcavage, E R Dohner, A R Bowring, H I Karunadasa, M D McGehee. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chemical Science (Cambridge), 2015, 6(1): 613–617
https://doi.org/10.1039/C4SC03141E pmid: 28706629
169 J W Lee, S G Kim, J M Yang, Y Yang, N G Park. Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7(4): 041111
https://doi.org/10.1063/1.5085643
170 D Yang, X Li, H Zeng. Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces, 2018, 5(8): 1701662
https://doi.org/10.1002/admi.201701662
171 Z Li, C Xiao, Y Yang, S P Harvey, D H Kim, J A Christians, M Yang, P Schulz, S U Nanayakkara, C S Jiang, J M Luther, J J Berry, M C Beard, M M Al-Jassim, K Zhu. Extrinsic ion migration in perovskite solar cells. Energy & Environmental Science, 2017, 10(5): 1234–1242
https://doi.org/10.1039/C7EE00358G
172 H Zhang, X Fu, Y Tang, H Wang, C Zhang, W W Yu, X Wang, Y Zhang, M Xiao. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature Communications, 2019, 10(1): 1088
https://doi.org/10.1038/s41467-019-09047-7 pmid: 30842434
173 J Cho, J T DuBose, A N T Le, P V Kamat. Suppressed halide ion migration in 2D lead halide perovskites. ACS Materials Letters, 2020, 2(6): 565–570
174 Y C Zhao, W K Zhou, X Zhou, K H Liu, D P Yu, Q Zhao. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light, Science & Applications, 2017, 6(5): e16243–e16248
https://doi.org/10.1038/lsa.2016.243 pmid: 30167249
175 J Xing, Q Wang, Q Dong, Y Yuan, Y Fang, J Huang. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics, 2016, 18(44): 30484–30490
https://doi.org/10.1039/C6CP06496E pmid: 27782266
176 F Lamberti, L Litti, M De Bastiani, R Sorrentino, M Gandini, M Meneghetti, A Petrozza. High-quality, ligands-free, mixed-halide perovskite nanocrystals inks for optoelectronic applications. Advanced Energy Materials, 2017, 7(8): 1601703
https://doi.org/10.1002/aenm.201601703
177 J Miao, F Zhang. Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(7): 1741–1791
https://doi.org/10.1039/C8TC06089D
178 Y Yang, H Dai, F Yang, Y Zhang, D Luo, X Zhang, K Wang, X W Sun, J Yao. All-perovskite photodetector with fast response. Nanoscale Research Letters, 2019, 14(1): 291
https://doi.org/10.1186/s11671-019-3082-z pmid: 31441017
179 C Li, W Huang, L Gao, H Wang, L Hu, T Chen, H Zhang. Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale, 2020, 12(4): 2201–2227
https://doi.org/10.1039/C9NR07799E pmid: 31942887
180 X Wang, M Li, B Zhang, H Wang, Y Zhao, B Wang. Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52: 172–183
https://doi.org/10.1016/j.orgel.2017.10.027
181 R Saran, R J Curry. Lead sulphide nanocrystal photodetector technologies. Nature Photonics, 2016, 10(2): 81–92
https://doi.org/10.1038/nphoton.2015.280
182 Y Fang, Q Dong, Y Shao, Y Yuan, J Huang. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686
https://doi.org/10.1038/nphoton.2015.156
183 L Gao, K Zeng, J Guo, C Ge, J Du, Y Zhao, C Chen, H Deng, Y He, H Song, G Niu, J Tang. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446–7454
https://doi.org/10.1021/acs.nanolett.6b03119 pmid: 27802046
184 X Geng, F Wang, H Tian, Q Feng, H Zhang, R Liang, Y Shen, Z Ju, G Y Gou, N Deng, Y T Li, J Ren, D Xie, Y Yang, T L Ren. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14(3): 2860–2868
https://doi.org/10.1021/acsnano.9b06345 pmid: 32027117
185 Y Fang, J Huang. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Advanced Materials, 2015, 27(17): 2804–2810
https://doi.org/10.1002/adma.201500099 pmid: 25786908
186 L Dou, Y M Yang, J You, Z Hong, W H Chang, G Li, Y Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5(1): 5404
https://doi.org/10.1038/ncomms6404 pmid: 25410021
187 J Zeng, X Li, Y Wu, D Yang, Z Sun, Z Song, H Wang, H Zeng. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Advanced Functional Materials, 2018, 28(43): 1804394
https://doi.org/10.1002/adfm.201804394
188 X Hu, X Zhang, L Liang, J Bao, S Li, W Yang, Y Xie. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380
https://doi.org/10.1002/adfm.201402020
189 K J Baeg, M Binda, D Natali, M Caironi, Y Y Noh. Organic light detectors: photodiodes and phototransistors. Advanced Materials, 2013, 25(31): 4267–4295
https://doi.org/10.1002/adma.201204979 pmid: 23483718
190 C Liu, K Wang, C Yi, X Shi, A W Smith, X Gong, A J Heeger. Efficient perovskite hybrid photovoltaics via alcohol-vapor annealing treatment. Advanced Functional Materials, 2016, 26(1): 101–110
https://doi.org/10.1002/adfm.201504041
191 W Hu, R Wu, S Yang, P Fan, J Yang, A Pan. Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage. Journal of Physics. D, Applied Physics, 2017, 50(37): 375101
https://doi.org/10.1088/1361-6463/aa8059
192 Z Cheng, K Liu, J Yang, X Chen, X Xie, B Li, Z Zhang, L Liu, C Shan, D Shen. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Applied Materials & Interfaces, 2019, 11(37): 34144–34150
https://doi.org/10.1021/acsami.9b09035 pmid: 31462038
193 F Wang, J Mei, Y Wang, L Zhang, H Zhao, D Zhao. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Applied Materials & Interfaces, 2016, 8(4): 2840–2846
https://doi.org/10.1021/acsami.5b11621 pmid: 26796674
194 Y Shen, D Yu, X Wang, C Huo, Y Wu, Z Zhu, H Zeng. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer. Nanotechnology, 2018, 29(8): 085201
https://doi.org/10.1088/1361-6528/aaa456 pmid: 29283889
195 P Li, B N Shivananju, Y Zhang, S Li, Q Bao. High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets. Journal of Physics. D, Applied Physics, 2017, 50(9): 094002
https://doi.org/10.1088/1361-6463/aa5623
196 Q Hu, H Wu, J Sun, D Yan, Y Gao, J Yang. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 2016, 8(9): 5350–5357
https://doi.org/10.1039/C5NR08277C pmid: 26883938
197 J Liu, Y Xue, Z Wang, Z Q Xu, C Zheng, B Weber, J Song, Y Wang, Y Lu, Y Zhang, Q Bao. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano, 2016, 10(3): 3536–3542
https://doi.org/10.1021/acsnano.5b07791 pmid: 26910395
198 H Deng, D Dong, K Qiao, L Bu, B Li, D Yang, H E Wang, Y Cheng, Z Zhao, J Tang, H Song. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 2015, 7(9): 4163–4170
https://doi.org/10.1039/C4NR06982J pmid: 25669161
199 Y Dong, Y Gu, Y Zou, J Song, L Xu, J Li, J Xue, X Li, H Zeng. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect. Small, 2016, 12(40): 5622–5632
https://doi.org/10.1002/smll.201602366 pmid: 27552525
200 X Li, D Yu, J Chen, Y Wang, F Cao, Y Wei, Y Wu, L Wang, Y Zhu, Z Sun, J Ji, Y Shen, H Sun, H Zeng. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023
https://doi.org/10.1021/acsnano.6b08194 pmid: 28107628
201 P Ramasamy, D H Lim, B Kim, S H Lee, M S Lee, J S Lee. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chemical Communications, 2016, 52(10): 2067–2070
https://doi.org/10.1039/C5CC08643D pmid: 26688424
202 Y Li, Y Lv, Z Guo, L Dong, J Zheng, C Chai, N Chen, Y Lu, C Chen. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Applied Materials & Interfaces, 2018, 10(18): 15888–15894
https://doi.org/10.1021/acsami.8b02857 pmid: 29671575
203 D M Jang, D H Kim, K Park, J Park, J W Lee, J K Song. Ultrasound synthesis of lead halide perovskite nanocrystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(45): 10625–10629
https://doi.org/10.1039/C6TC04213A
204 M S Hamed, G T Mola. Mixed halide perovskite solar cells: progress and challenges. Critical Reviews in Solid State and Material Sciences, 2029, 45(2): 85–112
https://doi.org/10.1080/10408436.2018.1549976
205 S Ludwigs, ed. P3HT Revisited-From Molecular Scale to Solar Cell Devices (Vol. 265). Berlin: Springer, 2014
206 W Shockley, H J Queisser. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519
https://doi.org/10.1063/1.1736034
207 B Chen, M Yang, S Priya, K Zhu. Origin of J–V hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2016, 7(5): 905–917
https://doi.org/10.1021/acs.jpclett.6b00215 pmid: 26886052
208 P Li, Y Zhang, C Liang, G Xing, X Liu, F Li, X Liu, X Hu, G Shao, Y Song. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells. Advanced Materials, 2018, 30(52): 1805323
https://doi.org/10.1002/adma.201805323 pmid: 30387210
209 A K Jena, A Kulkarni, T Miyasaka. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103
https://doi.org/10.1021/acs.chemrev.8b00539 pmid: 30821144
210 W S Yang, B W Park, E H Jung, N J Jeon, Y C Kim, D U Lee, S S Shin, J Seo, E K Kim, J H Noh, S I Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376–1379
https://doi.org/10.1126/science.aan2301 pmid: 28663498
211 H Snaith. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630
https://doi.org/10.1021/jz4020162
212 U Wurfel, A Cuevas, P Wurfel. Charge carrier separation in solar cells. IEEE Journal of Photovoltaics, 2015, 5(1): 461–469
https://doi.org/10.1109/JPHOTOV.2014.2363550
213 D Zhou, T Zhou, Y Tian, X Zhu, Y Tu. Perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials, 2018, 2018: 8148072
https://doi.org/10.1155/2018/8148072
214 L Calió, S Kazim, M Grätzel, S Ahmad. Hole-transport materials for perovskite solar cells. Angewandte Chemie International Edition, 2016, 55(47): 14522–14545
https://doi.org/10.1002/anie.201601757 pmid: 27739653
215 Z Guo, L Gao, C Zhang, Z Xu, T Ma. Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(11): 4572–4589
https://doi.org/10.1039/C7TA10742K
216 J Y Jeng, Y F Chiang, M H Lee, S R Peng, T F Guo, P Chen, T C Wen. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732
https://doi.org/10.1002/adma.201301327 pmid: 23775589
217 J C Yu, J A Hong, E D Jung, D B Kim, S M Baek, S Lee, S Cho, S S Park, K J Choi, M H Song. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8(1): 1070
https://doi.org/10.1038/s41598-018-19612-7 pmid: 29348661
218 Y Fang, C Bi, D Wang, J Huang. The functions of fullerenes in hybrid perovskite solar cells. ACS Energy Letters, 2017, 2(4): 782–794
https://doi.org/10.1021/acsenergylett.6b00657
219 K A Bush, A F Palmstrom, Z J Yu, M Boccard, R Cheacharoen, J P Mailoa, D P McMeekin, R L Z Hoye, C D Bailie, T Leijtens, I M Peters, M C Minichetti, N Rolston, R Prasanna, S Sofia, D Harwood, W Ma, F Moghadam, H J Snaith, T Buonassisi, Z C Holman, S F Bent, M D McGehee. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2(4): 17009
https://doi.org/10.1038/nenergy.2017.9
220 B S Swain, J Lee. Fabrication and optimization of nanocube mixed halide perovskite films for solar cell application. Solar Energy, 2020, 201: 209–218
https://doi.org/10.1016/j.solener.2020.03.002
221 Q Liu, Y Zhao, Y Ma, X Sun, W Ge, Z Fang, H Bai, Q Tian, B Fan, T Zhang. A mixed solvent for rapid fabrication of large-area methylammonium lead iodide layers by one-step coating at room temperature. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(31): 18275–18284
https://doi.org/10.1039/C9TA06084G
222 W Hou, Y Xiao, G Han, C Qin, L Xiao, Y Chang, H Li. Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Materials Research Bulletin, 2019, 112: 165–173
https://doi.org/10.1016/j.materresbull.2018.12.013
223 M Lyu, J Chen, N G Park. Improvement of efficiency and stability of CuSCN-based inverted perovskite solar cells by post-treatment with potassium thiocyanate. Journal of Solid State Chemistry, 2019, 269: 367–374
https://doi.org/10.1016/j.jssc.2018.10.014
224 X D Wang, W G Li, J F Liao, D B Kuang. Recent advances in halide perovskite single-crystal thin films: fabrication methods and optoelectronic applications. Solar RRL, 2019, 3(4): 1800294
https://doi.org/10.1002/solr.201800294
225 J Zhang, G Zhai, W Gao, C Zhang, Z Shao, F Mei, J Zhang, Y Yang, X Liu, B Xu. Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(8): 4190–4198
https://doi.org/10.1039/C6TA10526B
226 Y Xia, C Ran, Y Chen, Q Li, N Jiang, C Li, Y Pan, T Li, J Wang, W Huang. Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(7): 3193–3202
https://doi.org/10.1039/C6TA09554B
227 X Zhou, Y Zhang, W Kong, M Hu, L Zhang, C Liu, X Li, C Pan, G Yu, C Cheng, B Xu. Crystallization manipulation and morphology evolution for highly efficient perovskite solar cell fabrication via hydration water induced intermediate phase formation under heat assisted spin-coating. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(7): 3012–3021
https://doi.org/10.1039/C7TA08947C
228 F Ye, H Chen, F Xie, W Tang, M Yin, J He, E Bi, Y Wang, X Yang, L Han. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016, 9(7): 2295–2301
https://doi.org/10.1039/C6EE01411A
229 F Hao, C C Stoumpos, P Guo, N Zhou, T J Marks, R P H Chang, M G Kanatzidis. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. Journal of the American Chemical Society, 2015, 137(35): 11445–11452
https://doi.org/10.1021/jacs.5b06658 pmid: 26313318
230 C Ma, D Shen, B Huang, X Li, W C Chen, M F Lo, P Wang, M Hon-Wah Lam, Y Lu, B Ma, C S Lee. High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7(15): 8811–8817
https://doi.org/10.1039/C9TA01859J
231 P You, G Tang, F Yan. Two-dimensional materials in perovskite solar cells. Materials Today Energy, 2019, 11: 128–158
232 Y Wei, H Chu, B Chen, Y Tian, X Yang, B Cai, Y Zhang, J Zhao. Two-dimensional cyclohexane methylamine-based perovskites as stable light absorbers for solar cells. Solar Energy, 2020, 201: 13–20
https://doi.org/10.1016/j.solener.2020.02.100
233 C Y Chang, B C Tsai, M Z Lin, Y C Huang, C S Tsao. An integrated approach towards the fabrication of highly efficient and long-term stable perovskite nanowire solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(43): 22824–22833
https://doi.org/10.1039/C7TA07968K
234 S W Wang, S Yan, M A Wang, L Chang, J L Wang, Z Wang. Construction of nanowire CH3NH3PbI3-based solar cells with 17.62% efficiency by solvent etching technique. Solar Energy Materials and Solar Cells, 2017, 167: 173–177
https://doi.org/10.1016/j.solmat.2017.04.018
235 R Singh, S R Suranagi, S J Yang, K Cho. Enhancing the power conversion efficiency of perovskite solar cells via the controlled growth of perovskite nanowires. Nano Energy, 2018, 51: 192–198
https://doi.org/10.1016/j.nanoen.2018.06.054
236 J He, F Zhang, Y Xiang, J Lian, X Wang, Y Zhang, X Peng, P Zeng, J Qu, J Song. Preparation of low dimensional antimonene oxides and their application in Cu:NiOx based planar pin perovskite solar cells. Journal of Power Sources, 2019, 435: 226819
https://doi.org/10.1016/j.jpowsour.2019.226819
237 E M Sanehira, A R Marshall, J A Christians, S P Harvey, P N Ciesielski, L M Wheeler, P Schulz, L Y Lin, M C Beard, J M Luther. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3(10): eaao4204
https://doi.org/10.1126/sciadv.aao4204 pmid: 29098184
238 L Mao, Y Wu, C C Stoumpos, B Traore, C Katan, J Even, M R Wasielewski, M G Kanatzidis. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963
https://doi.org/10.1021/jacs.7b06143 pmid: 28745881
239 C F J Lau, X Deng, J Zheng, J Kim, Z Zhang, M Zhang, J Bing, B Wilkinson, L Hu, R Patterson, S Huang, A Ho-Baillie. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(14): 5580–5586
https://doi.org/10.1039/C7TA11154A
240 B Li, Y Zhang, L Fu, T Yu, S Zhou, L Zhang, L Yin. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature Communications, 2018, 9(1): 1076
https://doi.org/10.1038/s41467-018-03169-0 pmid: 29540764
241 J S Niezgoda, B J Foley, A Z Chen, J J Choi. Improved charge collection in highly efficient CsPbBrI2 solar cells with light-induced dealloying. ACS Energy Letters, 2017, 2(5): 1043–1049
https://doi.org/10.1021/acsenergylett.7b00258
242 H Mehdi, A Mhamdi, A Bouazizi. Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3−xClx mixed halide perovskite solar cells. Materials Science in Semiconductor Processing, 2020, 109: 104915
https://doi.org/10.1016/j.mssp.2020.104915
243 N Guo, T Zhang, G Li, F Xu, X Qian, Y Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. Journal of Semiconductors, 2017, 38(1): 014004
https://doi.org/10.1088/1674-4926/38/1/014004
244 F Yang, M A Kamarudin, P Zhang, G Kapil, T Ma, S Hayase. Enhanced crystallization by methanol additive in antisolvent for achieving high-quality MAPbI3 perovskite films in humid atmosphere. ChemSusChem, 2018, 11(14): 2348–2357
https://doi.org/10.1002/cssc.201800625 pmid: 29727046
245 E Aydin, J Troughton, M D Bastiani, E Ugur, M Sajjad, A Alzahrani, M Neophytou, U Schwingenschlögl, F Laquai, D Baran, S De Wolf. Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p–i–n perovskite solar cells. ACS Applied Energy Materials, 2018, 1(11): 6227–6233
https://doi.org/10.1021/acsaem.8b01263
246 Y Guo, X Yin, J Liu, W Chen, S Wen, M Que, H Xie, Y Yang, W Que, B Gao. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019, 65: 207–214
https://doi.org/10.1016/j.orgel.2018.11.021
247 I J Park, G Kang, M A Park, J S Kim, S W Seo, D H Kim, K Zhu, T Park, J Y Kim. Highly efficient and uniform 1 cm2 perovskite solar cells with an electrochemically deposited NiOx hole-extraction layer. ChemSusChem, 2017, 10(12): 2660–2667
https://doi.org/10.1002/cssc.201700612 pmid: 28489333
248 G Yin, H Zhao, H Jiang, S Yuan, T Niu, K Zhao, Z Liu, S F Liu. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Advanced Functional Materials, 2018, 28(39): 1803269
https://doi.org/10.1002/adfm.201803269
249 H Jiang, J Feng, H Zhao, G Li, G Yin, Y Han, F Yan, Z Liu, S Liu. Low temperature fabrication for high performance flexible CsPbI2Br perovskite solar cells. Advancement of Science, 2018, 5(11): 1801117
https://doi.org/10.1002/advs.201801117
250 L Mazzarella, Y H Lin, S Kirner, A B Morales-Vilches L , Korte S , Albrecht, E Crossland, B Stannowski, C Case, H J Snaith, R Schlatmann. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241
https://doi.org/10.1002/aenm.201803241
251 Z Liu, J Chang, Z Lin, L Zhou, Z Yang, D Chen, C Zhang, S Liu, Y Hao. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Advanced Energy Materials, 2018, 8(19): 1703432
https://doi.org/10.1002/aenm.201703432
252 Y Jo, K S Oh, M Kim, K H Kim, H Lee, C W Lee, D S Kim. High performance of planar perovskite solar cells produced from PbI2 (DMSO) and PbI2 (NMP) complexes by intramolecular exchange. Advanced Materials Interfaces, 2016, 3(10): 1500768
https://doi.org/10.1002/admi.201500768
253 K E Gkini, M Antoniadou, N Balis, A Kaltzoglou, A G Kontos, P Falaras. Mixing cations and halide anions in perovskite solar cells. Materials Today: Proceedings, 2019, 19: 73–78
https://doi.org/10.1016/j.matpr.2019.07.660
254 L L Jiang, Z K Wang, M Li, C C Zhang, Q Q Ye, K H Hu, D Z Lu, P F Fang, L S Liao. Passivated perovskite crystallization via g-C3N4 for high-performance solar cells. Advanced Functional Materials, 2018, 28(7): 1705875
https://doi.org/10.1002/adfm.201705875
255 M Hadadian, J P Correa-Baena, E K Goharshadi, A Ummadisingu, J Y Seo, J Luo, S Gholipour, S M Zakeeruddin, M Saliba, A Abate, M Grätzel, A Hagfeldt. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Advanced Materials, 2016, 28(39): 8681–8686
https://doi.org/10.1002/adma.201602785 pmid: 27515231
256 A Swarnkar, A R Marshall, E M Sanehira, B D Chernomordik, D T Moore, J A Christians, T Chakrabarti, J M Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
https://doi.org/10.1126/science.aag2700 pmid: 27846497
257 K Ahmad, P Kumar, S M Mobin. A two-step modified sequential deposition method-based Pb-free (CH3NH3)3Sb2I9 perovskite with improved open circuit voltage and performance. ChemElectroChem, 2020, 7(4): 946–950
https://doi.org/10.1002/celc.201902107
[1] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[2] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
[3] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[4] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[5] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[6] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[7] Junze LI, Haizhen WANG, Dehui LI. Self-trapped excitons in two-dimensional perovskites[J]. Front. Optoelectron., 2020, 13(3): 225-234.
[8] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[9] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[10] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[11] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[12] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[13] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[14] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[15] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed