Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 333-347    https://doi.org/10.1007/s12200-018-0852-7
REVIEW ARTICLE
Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy
Xiaofan ZHANG1,2(), Man LIU1, Weiqian KONG1, Hongbo FAN2
1. Henan Provincial Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
2. School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
 Download: PDF(604 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Investigation on the mechanism and kinetics of charge transfer at semiconductor/electrolyte interface is significant for improving the photoelectric conversion efficiency and developing novel and high-efficiency photovoltaic devices. Scanning electrochemical microscopy (SECM), as a powerful analytical technique, has a potential advantage of high spatial and temporal resolution. It has been expanded into a broad range of research fields since the first inception of SECM in 1989 by Bard groups, which includes biological, enzymes, corrosion, energy conversion and storage (such as solar cells, hydrogen and battery). Herein, we review the basic principles and the development of SECM, and chiefly introduce the recent advances of SECM investigation in photoelectrochemical (PEC) cells including solar cells and PEC water splitting. These advances include rapid screening of photocatalysts/photoelectrodes, interfacial reaction kinetics and quantitation of reaction intermediates, which is significant for evaluating the performance, choosing catalysts and developing novel composite photoanodes and high efficiency devices. Finally, we briefly describe the development trends of SECM in energy research.

Keywords scanning electrochemical microscopy (SECM)      solar cells      photoelectrochemical (PEC) water splitting      screening      kinetics      intermediates     
Corresponding Author(s): Xiaofan ZHANG   
Just Accepted Date: 27 September 2018   Online First Date: 19 November 2018    Issue Date: 21 December 2018
 Cite this article:   
Xiaofan ZHANG,Man LIU,Weiqian KONG, et al. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0852-7
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/333
Fig.1  Simple schematic of a SECM instrument (WE: working electrode, RE: reference electrode, CE: counter electrode)
Fig.2  Basic principle of the feedback mode
Fig.3  Schematic diagram of mechanism for the surface interrogation (SI) mode [31,32] (OC is denoted as open circuit)
applications measurement mode Refs.
dye-sensitized solar cells dye regeneration kinetics feedback mode [3335]
dye-sensitized solar cells imaging feedback and SG/TC mode [36]
perovskite solar cells kinetics feedback mode [37]
oxygen reduction reaction detect hydrogen peroxide TG/SC mode [38]
hydrogen evolution reaction kinetics SG/TC mode [39]
formic acid oxidation electrocatalytic activity TG/SC mode [40]
oxygen reduction reaction mechanism SG/TC mode [41]
Li-ion batteries Li-ion intercalation SG/TC mode [42,43]
supercapacitor charge transfer kinetics feedback mode [44]
corrosion localized corrosion TG/SC mode [45]
photoelectrochemical kinetics SI-SECM mode [46]
photocatalysis screening TG/SC mode [31,47]
electroreduction of CO2 CO2 reduction SG/TC mode [32]
hydrogen evolution reaction kinetics feedback mode [48]
decomposition of formic acid quantification of adsorbed hydrogen SI-SECM mode [49]
Tab.1  Application of SECM based on the above modes
Fig.4  Basic arrangement for probing the heterogeneous reaction at the (a) n-type dye-sensitized semiconductor (TiO2) and (b) p-type dye-sensitized semiconductor (CuCrO2) interface in the feedback mode of SECM under short-circuit conditions. The mediator couple is Co3+/Co2+ and T2/T, respectively (Ref: reference electrode, Aux: auxiliary electrode, WE-1: working electrode 1, WE-1: working electrode 2). Plot of ln(keff) vs. h for (a) FTO/TiO2 electrodes in acetonitrile corresponding to the reduction with I- and Co2+ and for (b) FTO/CuCrO2 electrodes in acetonitrile corresponding to the oxidation with T2 and I3[59]. Copyright © 2014, John Wiley and Sons
Fig.5  Dispensed pattern of photocatalyst spot array with different mol % of Sn in Fe2O3 (a) and Be in 4% Sn-Fe2O3 (b). SECM image of (c) Sn doping Fe2O3 and (d) Be doping Sn-Fe2O3 measured with spot arrays at 0.2 V vs. Ag/AgCl in 0.2 mol NaOH under visible light irradiation (l≥420 nm) [81]. Copyright © 2009, American Chemical Society
Fig.6  (a) SECM images for the typical photocurrent response of Zn/WO3 composites under full UV irradiation and with a 420 nm long-pass filter. (b) PEC response of electrodes with chopped light under full UV irradiation at 20 mV/s [83]. Copyright © 2013, American Chemical Society
Fig.7  (a) Operation principle of SECM and the corresponding image results of the electrocatalyst (b) Ir/Co oxide array, (c) photocurrent at Co3O4 spot, and (d) photocurrent at Pt spot [84]. Copyright © 2011, American Chemical Society
Fig.8  (a) Basic principles for investigating of interfacial reaction kinetics in PEC water splitting under the feedback mode of SECM (Ref: reference electrode, Aux: auxiliary electrode, WE-1: working electrode 1, WE-1: working electrode 2). The semiconductor photocatalyst is BiVO4 and the redox probe is [Fe(CN)6]3/[Fe(CN)6]4 (named Fe3+/Fe2+). (b) Energy scheme of BiVO4 system on electrochemical and vacuum scale at pH 7.0. Reaction 1 is the catalytic reaction, and reaction 2 is back reaction at interface [88]. Copyright © 2016, American Chemical Society
Fig.9  (a) Description of the general SI-SECM simulation space and conditions. All geometries are in axial 2D and described by z and r were shown. Boundary types: i, insulation; ii, bulk concentration (semi-infinite); iii, flux at the tip; iv, concentration of hydroxyl radical OH at the substrate; v, insulation. (b) Description of the surface interrogation technique for the reduction of ?OH(ads) on TiO2. ① No ?OH(ads) on TiO2; ②?OH(ads) are generated on TiO2 through surface irradiation. ③ Light is turned off, interrogation of ?OH(ads) takes place by reduced species generated at the tip [91]. Copyright © 2012, Royal Society of Chemistry
1 J PHoldren. Energy and sustainability. Science, 2007, 315(5813): 737
https://doi.org/10.1126/science.1139792 pmid: 17289943
2 PLianos. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 2017, 210: 235–254
https://doi.org/10.1016/j.apcatb.2017.03.067
3 DLi, J Shi, CLi. Transition-metal-based electrocatalysts as cocatalysts for photoelectrochemical water splitting: a mini review. Small, 2018, 14(23): 1704179
https://doi.org/10.1002/smll.201704179 pmid: 29575653
4 AFujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
5 DKlotz, D A Grave, H Dotan, ARothschild. Empirical analysis of the photoelectrochemical impedance response of hematite photoanodes for water photo-oxidation. Journal of Physical Chemistry Letters, 2018, 9(6): 1466–1472
https://doi.org/10.1021/acs.jpclett.8b00096 pmid: 29512388
6 MWang, P Chen, RHumphry-Baker, S MZakeeruddin, MGrätzel. The influence of charge transport and recombination on the performance of dye-sensitized solar cells. ChemPhysChem, 2009, 10(1): 290–299
https://doi.org/10.1002/cphc.200800708 pmid: 19115326
7 DKlotz, D S Ellis, H Dotan, ARothschild. Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS. Physical Chemistry Chemical Physics, 2016, 18(34): 23438–23457
https://doi.org/10.1039/C6CP04683E pmid: 27524381
8 ATsyganok, D Klotz, K DMalviya, ARothschild, D AGrave. Different roles of Fe1−xNixOOH co-catalyst on hematite (a-Fe2O3) photoanodes with different dopants. ACS Catalysis, 2018, 8(4): 2754–2759
https://doi.org/10.1021/acscatal.7b04386
9 RBerera, R van Grondelle, J TKennis. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis Research, 2009, 101(2-3): 105–118
https://doi.org/10.1007/s11120-009-9454-y pmid: 19578970
10 G XPei, J H J Wijten, B M Weckhuysen. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2018, 20(15): 9806–9811
https://doi.org/10.1039/C8CP00981C pmid: 29620131
11 MWang, G Alemu, YShen. Scanning probe microscopy investigation of metal oxides nanocrystalline. In: Current Microscopy Contributions to Advances in Science and Technology, Chapter 3, 2012, 1377–1386
12 D VEsposito, J B Baxter, J John, N SLewis, T PMoffat, TOgitsu, G DO’Neil, T APham, A ATalin, J MVelazquez, B CWood. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy & Environmental Science, 2015, 8(10): 2863–2885
https://doi.org/10.1039/C5EE00835B
13 JCen, Q Wu, MLiu, AOrlov. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress. Green Energy & Environment, 2017, 2(2): 100–111
https://doi.org/10.1016/j.gee.2017.03.001
14 TMiki, H Yanagi. Scanning probe microscopic characterization of surface-modified n-TiO2 single-crystal electrodes. Langmuir, 1998, 14(12): 3405–3410
https://doi.org/10.1021/la971099z
15 EWierzbiński, MSzklarczyk. Photoelectrochemical and in situ atomic force microscopy studies of films derived from o-methoxyaniline solution on gallium arsenide (100) photoelectrode. Thin Solid Films, 2003, 424(2): 191–200
https://doi.org/10.1016/S0040-6090(02)01122-7
16 F MToma, J K Cooper, V Kunzelmann, M TMcDowell, JYu, D M Larson, N J Borys, C Abelyan, J WBeeman, K MYu, JYang, L Chen, M RShaner, JSpurgeon, F AHoule, K APersson, I DSharp. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nature Communications, 2016, 7: 12012
https://doi.org/10.1038/ncomms12012 pmid: 27377305
17 N JEconomou, S Mubeen, S KBuratto, E WMcFarland. Investigation of arrays of photosynthetically active heterostructures using conductive probe atomic force microscopy. Nano Letters, 2014, 14(6): 3328–3334
https://doi.org/10.1021/nl500754q pmid: 24784236
18 RNakamura, Y Nakato. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. Journal of the American Chemical Society, 2004, 126(4): 1290–1298
https://doi.org/10.1021/ja0388764 pmid: 14746503
19 OZandi, T W Hamann. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nature Chemistry, 2016, 8(8): 778–783
https://doi.org/10.1038/nchem.2557 pmid: 27442283
20 KMcKelvey, B P Nadappuram, P Actis, YTakahashi, Y EKorchev, TMatsue, CRobinson, P RUnwin. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Analytical Chemistry, 2013, 85(15): 7519–7526
https://doi.org/10.1021/ac401476z pmid: 23795948
21 GZampardi, S Klink, VKuznetsov , TErichsen, AMaljusch, FLa Mantia, WSchuhmann , EVentosa. Combined AFM/SECM investigation of the solid electrolyte interphase in Li-ion batteries. Chemelectrochem, 2015, 2(10): 1607–1611
https://doi.org/10.1002/celc.201500085
22 YTakahashi, A I Shevchuk, P Novak, YMurakami, HShiku, Y EKorchev, TMatsue. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. Journal of the American Chemical Society, 2010, 132(29): 10118–10126
https://doi.org/10.1021/ja1029478 pmid: 20590117
23 ABaranski, P Diakowski. Application of AC impedance techniques to scanning electrochemical microscopy. Journal of Solid State Electrochemistry, 2004, 8(10): 683–692
https://doi.org/10.1007/s10008-004-0533-x
24 MMirkin, F Fan, ABard. Scanning electrochemical microscopy part 13. Evaluation of the tip shapes of nanometer size microelectrodes. Journal of Electroanalytical Chemistry, 1992, 328(1-2): 47–62
https://doi.org/10.1016/0022-0728(92)80169-5
25 ABard, F Fan, JKwak, OLev. Scanning electrochemical microscopy: introduction and principles. Analytical Chemistry, 1989, 61(3): 132–138
26 REngstrom, C Pharr. Scanning electrochemical microscopy. Analytical Chemistry, 1989, 61(19): 1099A–1104A
https://doi.org/10.1021/ac00194a735
27 DPolcari, P Dauphin-Ducharme, JMauzeroll. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chemical Reviews, 2016, 116(22): 13234–13278
https://doi.org/10.1021/acs.chemrev.6b00067 pmid: 27736057
28 JRodriguez-López, M AAlpuche-Aviles, A JBard. Selective insulation with poly(tetrafluoroethylene) of substrate electrodes for electrochemical background reduction in scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(5): 1813–1818
https://doi.org/10.1021/ac7020294 pmid: 18251520
29 J.Rodríguez-LópezSurface interrogation mode of scanning electrochemical microscopy (SI-SECM): an approach to the study of adsorption and (electro)catalysis at electrodes. Electroanalytical Chemistry: A Series of Advances, 2012, 24: 287–341
30 BZhang, X Xu, XZhang, DHuang, SLi, Y Zhang, FZhan, MDeng, Y He, WChen, YShen, M Wang. Investigation of dye regeneration kinetics in sensitized solar cells by scanning electrochemical microscopy. ChemPhysChem, 2014, 15(6): 1182–1189
https://doi.org/10.1002/cphc.201301076 pmid: 24729527
31 YWeng, K Hsiao. Composition optimization of ZnO-based photocatalyst arrays by scanning electrochemical microscopy and the characterization of efficient photocatalysts. International Journal of Hydrogen Energy, 2015, 40(8): 3238–3248
https://doi.org/10.1016/j.ijhydene.2015.01.049
32 FLi, I Ciani, PBertoncello, P RUnwin, J JZhao, C RBradbury, D JFermin. Scanning electrochemical microscopy of redox-mediated hydrogen evolution catalyzed by two-dimensional assemblies of palladium nanoparticles. Journal of Physical Chemistry C, 2008, 112(26): 9686–9694
https://doi.org/10.1021/jp8001228
33 BZhang, H Yuan, XZhang, DHuang, SLi, M Wang, YShen. Investigation of regeneration kinetics in quantum-dots-sensitized solar cells with scanning electrochemical microscopy. ACS Applied Materials & Interfaces, 2014, 6(23): 20913–20918
https://doi.org/10.1021/am505569w pmid: 25397869
34 GAlemu, B Zhang, JLi, XXu, J Cui, YShen, MWang. Investigation of dye-regeneration kinetics at dye-sensitized p-type CuCrO2 film/electrolytes interface with scanning electrochemical microscopy. Nano, 2014, 9(5): 1440008
35 CMartin, B Bozic-Weber, EConstable, TGlatzel, CHousecroft, IWright. Development of scanning electrochemical microscopy (SECM) techniques for the optimization of dye sensitized solar cells. Electrochimica Acta, 2014, 119: 86–91
https://doi.org/10.1016/j.electacta.2013.11.172
36 ISchmidt, I Plettenberg, DKimmich, HEllis, JWitt, C Dosche, GWittstock. Spatially resolved analysis of screen printed photoanodes of dye-sensitized solar cells by scanning electrochemical microscopy. Electrochimica Acta, 2016, 222: 735–746
https://doi.org/10.1016/j.electacta.2016.11.030
37 YShen, M Träuble, GWittstock. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(3): 750–759
https://doi.org/10.1021/ac0711889 pmid: 18179180
38 HLi, M Du, M JMleczko, A LKoh, YNishi, EPop, A J Bard, X Zheng. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. Journal of the American Chemical Society, 2016, 138(15): 5123–5129
https://doi.org/10.1021/jacs.6b01377 pmid: 26997198
39 CJung, C M Sánchez-Sánchez, C L Lin, J Rodríguez-López, A JBard. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Analytical Chemistry, 2009, 81(16): 7003–7008
https://doi.org/10.1021/ac901096h pmid: 19627121
40 C MSánchez-Sánchez, JRodríguez-López, A JBard. Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Analytical Chemistry, 2008, 80(9): 3254–3260
https://doi.org/10.1021/ac702453n pmid: 18355084
41 EVentosa, W Schuhmann. Scanning electrochemical microscopy of Li-ion batteries. Physical Chemistry Chemical Physics, 2015, 17(43): 28441–28450
https://doi.org/10.1039/C5CP02268A pmid: 26076998
42 FXu, B Beak, CJung. In situ electrochemical studies for Li+ ions dissociation from the LiCoO2 electrode by the substrate-generation/tip-collection mode in SECM. Journal of Solid State Electrochemistry, 2012, 16(1): 305–311
https://doi.org/10.1007/s10008-011-1325-8
43 HBülter, F Peters, JSchwenzel, GWittstock. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angewandte Chemie, 2014, 53(39): 10531–10535
https://doi.org/10.1002/anie.201403935 pmid: 25079515
44 ASumboja, U Tefashe, GWittstock, P SLee. Investigation of charge transfer kinetics of polyaniline supercapacitor electrodes by scanning electrochemical microscopy. Advanced Materials Interfaces, 2015, 2(1): 1400154
https://doi.org/10.1002/admi.201400154
45 QZhang, Z Ye, ZZhu, XLiu, J Zhang, FCao. Separation and kinetic study of iron corrosion in acidic solution via a modified tip generation/substrate collection mode by SECM. Corrosion Science, 2018, 139: 403–409
https://doi.org/10.1016/j.corsci.2018.05.021
46 JLee, H Ye, SPan, A JBard. Screening of photocatalysts by scanning electrochemical microscopy. Analytical Chemistry, 2008, 80(19): 7445–7450
https://doi.org/10.1021/ac801142g pmid: 18717588
47 NSreekanth, K L Phani. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chemical Communications (Cambridge, England), 2014, 50(76): 11143–11146
https://doi.org/10.1039/C4CC03099K pmid: 25109460
48 JRodríguez-López, A JBard. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum. Journal of the American Chemical Society, 2010, 132(14): 5121–5129
https://doi.org/10.1021/ja9090319 pmid: 20225806
49 J LFernández, J MWhite, YSun, W Tang, GHenkelman, A JBard. Characterization and theory of electrocatalysts based on scanning electrochemical microscopy screening methods. Langmuir, 2006, 22(25): 10426–10431
https://doi.org/10.1021/la061164h pmid: 17129011
50 DJantz, K Leonard. Characterizing electrocatalysts with scanning electrochemical microscopy. Industrial & Engineering Chemistry Research, 2018, 57(22): 7431–7440
https://doi.org/10.1021/acs.iecr.8b00922
51 YLi, X Ning, QMa, DQin, X Lu. Recent advances in electrochemistry by scanning electrochemical microscopy. Trends in Analytical Chemistry, 2016, 80: 242–254
https://doi.org/10.1016/j.trac.2016.02.002
52 M ERincón, M ETrujillo, JÁvalos, NCasillas. Photoelectrochemical processes at interfaces of nanostructured TiO2/carbon black composites studied by scanning photoelectrochemical microscopy. Journal of Solid State Electrochemistry, 2007, 11(9): 1287–1294
https://doi.org/10.1007/s10008-007-0288-2
53 BBozic, E Figgemeier. Scanning electrochemical microscopy under illumination: an elegant tool to directly determine the mobility of charge carriers within dye-sensitized nanostructured semiconductors. Chemical Communications (Cambridge, England), 2006, 21(21): 2268–2270
https://doi.org/10.1039/b601587e pmid: 16718325
54 U MTefashe, T Loewenstein, HMiura, DSchlettwein, GWittstock. Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. Journal of Electroanalytical Chemistry, 2010, 650(1): 24–30
https://doi.org/10.1016/j.jelechem.2010.09.014
55 U MTefashe, M Rudolph, HMiura, DSchlettwein, GWittstock. Photovoltaic characteristics and dye regeneration kinetics in D149-sensitized ZnO with varied dye loading and film thickness. Physical Chemistry Chemical Physics, 2012, 14(20): 7533–7542
https://doi.org/10.1039/c2cp40798a pmid: 22510720
56 U MTefashe, K Nonomura, NVlachopoulos, AHagfeldt, GWittstock. Effect of cationon dye regeneration kinetics of N719-sensitized TiO2 films in acetonitrile-based and ionic-liquid-based electrolytes investigated by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2012, 116(6): 4316–4323
https://doi.org/10.1021/jp207671w
57 YShen, K Nonomura, DSchlettwein, CZhao, G Wittstock. Photoelectrochemical kinetics of eosin y-sensitized zinc oxide films investigated by scanning electrochemical microscopy. Chemistry (Weinheim an der Bergstrasse, Germany), 2006, 12(22): 5832–5839
https://doi.org/10.1002/chem.200501241 pmid: 16683277
58 YShen, U M Tefashe, K Nonomura, TLoewenstein, DSchlettwein, GWittstock. Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED. Electrochimica Acta, 2009, 55(2): 458–464
https://doi.org/10.1016/j.electacta.2009.08.062
59 XXu, B Zhang, JCui, DXiong, YShen, W Chen, LSun, YCheng, MWang. Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale, 2013, 5(17): 7963–7969
https://doi.org/10.1039/c3nr02169f pmid: 23863997
60 AKojima, K Teshima, YShirai, TMiyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051
https://doi.org/10.1021/ja809598r pmid: 19366264
61 HHsu, L Ji, MDu, JZhao, E Yu, ABard. Optimization of PbI2/MAPbI3 perovskite composites by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2016, 120(35): 19890–19895
https://doi.org/10.1021/acs.jpcc.6b07850
62 GAlemu, J Li, JCui, XXu, B Zhang, KCao, YShen, Y Cheng, MWang. Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9216–9222
https://doi.org/10.1039/C4TA06126H
63 JJang, J Lee, HYe, FFan, A Bard. Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. Journal of Physical Chemistry C, 2009, 113(16): 6719–6724
https://doi.org/10.1021/jp8109429
64 ACurrao. Photoelectrochemical water splitting. Chimia, 2007, 61(12): 815–819
https://doi.org/10.2533/chimia.2007.815
65 CAcar, I Dincer, CZamfirescu. A review on selected heterogeneous photocatalysts for hydrogen production. International Journal of Energy Research, 2014, 38(15): 1903–1920
https://doi.org/10.1002/er.3211
66 CAcar, I Dincer. A review and evaluation of photoelectrode coating materials and methods for photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 2016, 41(19): 7950–7959
https://doi.org/10.1016/j.ijhydene.2015.11.160
67 QShi, S Murcia-López, PTang, CFlox, J Morante, ZBian, HWang, T Andreu. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catalysis, 2018, 8(4): 3331–3342
https://doi.org/10.1021/acscatal.7b04277
68 YYang, S Niu, DHan, TLiu, G Wang, YLi. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Advanced Energy Materials, 2017, 7(19): 1700555
https://doi.org/10.1002/aenm.201700555
69 XZhang, B Zhang, ZZuo, MWang, Y Shen. N/Si co-doped oriented single crystalline rutile TiO2 nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(18): 10020–10025
https://doi.org/10.1039/C5TA00613A
70 XZhang, H Yang, BZhang, YShen, M Wang. BiOI-TiO2 nanocomposites for photoelectrochemical water splitting. Advanced Materials Interfaces, 2016, 3(1): 1500273
https://doi.org/10.1002/admi.201500273
71 SHarrison, M Hayne. Photoelectrolysis using type-II semiconductor heterojunctions. Scientific Reports, 2017, 7(1): 11638
https://doi.org/10.1038/s41598-017-11971-x pmid: 28912457
72 HWang, L Zhang, ZChen, JHu, S Li, ZWang, JLiu, X Wang. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244
https://doi.org/10.1039/C4CS00126E pmid: 24841176
73 JYang, D Wang, HHan, CLi. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
https://doi.org/10.1021/ar300227e pmid: 23530781
74 XZhang, B Zhang, SLiu, HKang, W Kong, SZhang, YShen, B Yang. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation. Applied Surface Science, 2018, 436: 974–980
https://doi.org/10.1016/j.apsusc.2017.12.078
75 XZhang, B Zhang, YLuo, XLv, Y Shen. Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation. Applied Surface Science, 2017, 391: 288–294
https://doi.org/10.1016/j.apsusc.2016.07.035
76 XZhang, B Zhang, DHuang, HYuan, M Wang, YShen. TiO2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon, 2014, 80: 591–598
https://doi.org/10.1016/j.carbon.2014.09.002
77 WShi, X Zhang, JBrillet, DHuang, MLi, M Wang, YShen. Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105: 387–393
https://doi.org/10.1016/j.carbon.2016.04.051
78 WShi, X Zhang, SLi, BZhang, MWang, Y Shen. Carbon coated Cu2O nanowires for photoelectrochemical water splitting with enhanced activity. Applied Surface Science, 2015, 358: 404–411
https://doi.org/10.1016/j.apsusc.2015.08.223
79 XZhang, B Zhang, KCao, JBrillet, JChen, M Wang, YShen. A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(43): 21630–21636
https://doi.org/10.1039/C5TA05838D
80 Y SChen, J S Manser, P V Kamat. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production. Journal of the American Chemical Society, 2015, 137(2): 974–981
https://doi.org/10.1021/ja511739y pmid: 25543877
81 JBrillet, J Yum, MCornuz, THisatomi, RSolarska, JAugustynski, MGrätzel, KSivula. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics, 2012, 6(12): 824–828
https://doi.org/10.1038/nphoton.2012.265
82 HPark, K Kweon, HYe, EPaek, G Hwang, ABard. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. Journal of Physical Chemistry C, 2011, 115(36): 17870–17879
https://doi.org/10.1021/jp204492r
83 KLeonard, K Nam, HLee, SKang, H Park, ABard. ZnWO4/WO3 composite for improving photoelectrochemical water oxidation. Journal of Physical Chemistry C, 2013, 117(31): 15901–15910
https://doi.org/10.1021/jp403506q
84 HYe, H Park, ABard. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemic al microscopy. Journal of Physical Chemistry C, 2011, 115(25): 12464–12470
https://doi.org/10.1021/jp200852c
85 HYe, J Lee, JJang, ABard. Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. Journal of Physical Chemistry C, 2010, 114(31): 13322–13328
https://doi.org/10.1021/jp104343b
86 XLu, Y Hu, HHe. Electron transfer kinetics at interfaces using secm (scanning electrochemical microscopy). In: Sur U K, ed. Recent Trend in Electrochemical Science and Technology. Rijeka: In Tech, 2012, 127–156
87 H SAhn, A J Bard. Surface interrogation scanning electrochemical microscopy of Ni1−xFexOOH (0<x< 0.27) oxygen evolving catalyst: kinetics of the “fast” iron sites. Journal of the American Chemical Society, 2016, 138(1): 313–318
https://doi.org/10.1021/jacs.5b10977 pmid: 26645678
88 BZhang, X Zhang, XXiao, YShen. Photoelectrochemical water splitting system--a study of interfacial charge transfer with scanning electrochemical microscopy. ACS Applied Materials & Interfaces, 2016, 8(3): 1606–1614
https://doi.org/10.1021/acsami.5b07180 pmid: 26720831
89 SRastgar, G Wittstock. Characterization of photoactivity of nanostructured BiVO4 at polarized liquid-liquid interfaces by scanning electrochemical microscopy. Journal of Physical Chemistry C, 2017, 121(46): 25941–25948
https://doi.org/10.1021/acs.jpcc.7b09550
90 H SAhn, A J Bard. Surface interrogation of CoPi water oxidation catalyst by scanning electrochemical microscopy. Journal of the American Chemical Society, 2015, 137(2): 612–615
https://doi.org/10.1021/ja511740h pmid: 25562373
91 DZigah, J Rodríguez-López, A JBard. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Physical Chemistry Chemical Physics, 2012, 14(37): 12764–12772
https://doi.org/10.1039/c2cp40907k pmid: 22903377
92 HPark, K Leonard, ABard. Surface interrogation scanning electrochemical microscopy (SI-SECM) of photoelectrochemistry at a W/Mo-BiVO4 semiconductor electrode: quantification of hydroxyl radicals during water oxidation. Journal of Physical Chemistry C, 2013, 117(23): 12093–12102
https://doi.org/10.1021/jp400478z
93 SCho, H Park, HLee, KNam, A Bard. Metal doping of BiVO4 by composite electrodeposition with improved photoelectrochemical water oxidation. Journal of Physical Chemistry C, 2013, 117(44): 23048–23056
https://doi.org/10.1021/jp408619u
94 M RKrumov, B H Simpson, M J Counihan, J Rodríguez-López.In situ quantification of surface intermediates and correlation to discharge products on hematite photoanodes using a combined scanning electrochemical microscopy approach. Analytical Chemistry, 2018, 90(5): 3050–3057
https://doi.org/10.1021/acs.analchem.7b04896 pmid: 29392940
95 J YKim, H S Ahn, A J Bard. Surface interrogation scanning electrochemical microscopy for a photoelectrochemical reaction: water oxidation on a hematite surface. Analytical Chemistry, 2018, 90(5): 3045–3049
https://doi.org/10.1021/acs.analchem.7b04728 pmid: 29392942
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[3] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[4] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[5] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[6] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[7] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[8] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[9] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[10] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[11] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[12] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[13] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[14] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
[15] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed