Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (4) : 413-417    https://doi.org/10.1007/s12200-013-0353-7
RESEARCH ARTICLE
High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode
Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN()
Michael Gr?tzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A monobasal solid-state dye-sensitized solar cell (ssDSC) with mesoporous TiO2 beads was developed and an efficiency of 4% was achieved under air mass (AM) 1.5 illumination. Scattering properties and electron diffusion coefficients of TiO2 mesoporous beads and P25 nano-particles were investigated. The results show that TiO2 mesoporous beads display higher scatterance than P25 nano-particles, and TiO2 mesoporous beads have higher electron diffusion coefficients (2.86 × 10-5 cm2?s-1) than P25 nano-particles (2.26 × 10-5 cm2?s-1).

Keywords dye-sensitized solar cells (DSCs)      mesoporous beads      scattering      electron diffusion coefficients     
Corresponding Author(s): HAN Hongwei,Email:hongwei.han@mail.hust.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Heng WANG,Peng XIANG,Zhiliang KU, et al. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0353-7
https://academic.hep.com.cn/foe/EN/Y2013/V6/I4/413
Fig.1  Schemed structure of ssDSC based on mesoporous TiO beads. Spiro-MeOTAD is filled in the pores of the mesoporous TiO beads layer, ZrO insulating layer and carbon counter electrode layer
Fig.2  Low- and high-magnification SEM images of mesoporous TiO beads film. (a) Low magnification; (b) high magnification
deviceJSC/(mA?cm-2)VOC/mVFFη/%
1(P25)3.247850.491.24
2 (Beads)6.728280.593.29
3(P25)6.317870.623.1
4 (Beads)7.288460.654.0
Tab.1  Summary of the photovoltaic performance at an illumination intensity of one sun (AM1.5 global, 100 mW?cm). Devices 1 and 3 are based on P25 titania electrodes. Devices 2 and 4 are based on mesoporous TiO beads electrodes. For devices 3 and 4 the TiO electrodes are both treated with TiCl aqueous solution. For devices 1 and 2, the TiO electrodes are not treated with TiCl aqueous solution. (: short circuit current density, : open circuit potential, : fill factor and : conversion efficiency)
Fig.3  Photocurrent density-voltage curve (a) and IPCE spectra (b) of ssDSCs based on mesoporous TiO beads and P25 titania electrode with TiCl treatment
Fig.4  IMPS (a) and IMVS (b) of ssDSCs based on mesoporous TiO beads and P25 titania electrode
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737-740
doi: 10.1038/353737a0
2 Yella A, Lee H W, Tsao H N, Yi C Y, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Gr?tzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science , 2011, 334(6056): 629-634
doi: 10.1126/science.1209688 pmid: PMID:22053043
3 Hagen J, Schaffrath W, Otschik P, Fink R, Bacher A, Schmidt H W, Haarer D. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synthetic Metals , 1997, 89(3): 215-220
doi: 10.1016/S0379-6779(97)81221-0
4 Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, Gr?tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395(6702): 583-585
doi: 10.1038/26936
5 Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Gr?tzel M. Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials , 2005, 17(7): 813-815
doi: 10.1002/adma.200401410
6 Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C Y, Nazeeruddin M K, Gr?tzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society , 2011, 133(45): 18042-18045
doi: 10.1021/ja207367t pmid:21972850
7 Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Gr?tzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Letters , 2011, 11(4): 1452-1456
doi: 10.1021/nl104034e pmid:21375265
8 Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Gr?tzel M. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Letters , 2007, 7(11): 3372-3376
doi: 10.1021/nl071656u pmid:17918905
9 Mor G K, Kim S, Paulose M, Varghese O K, Shankar K, Basham J, Grimes C A. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Letters , 2009, 9(12): 4250-4257
doi: 10.1021/nl9024853 pmid:19775127
10 Wang M, Bai J, Le Formal F, Moon S J, Cevey-Ha L, Humphry-Baker R, Gr?tzel C, Zakeeruddin S M, Gr?tzel M. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. Journal of Physical Chemistry C , 2012, 116(5): 3266-3273
doi: 10.1021/jp209130x
11 Zhang W, Zhu R, Ke L, Liu X, Liu B, Ramakrishna S. Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells. Small , 2010, 6(19): 2176-2182
doi: 10.1002/smll.201000759 pmid:20814922
12 Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin S M, Forró L, Magrez A, Gr?tzel M. High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. ACS Nano , 2010, 4(12): 7644-7650
doi: 10.1021/nn1024434 pmid:21082857
13 Wang H, Liu G H, Li X, Xiang P, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Han H W. Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy & Environmental Science , 2011, 4(6): 2025-2029
14 Chen D, Huang F, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Advanced Materials , 2009, 21(21): 2206-2210
doi: 10.1002/adma.200802603
15 Xiang P, Li X, Wang H, Liu G H, Shu T, Zhou Z M, Ku Z L, Rong Y G, Xu M, Liu L F, Hu M, Yang Y, Chen W, Liu T F, Zhang M L, Han H W. Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell. Nanoscale Research Letters , 2011, 6(1): 1-5
doi: 10.1186/1556-276X-6-606 pmid:22115421
16 Tiwana P, Parkinson P, Johnston M B, Snaith H J, Herz L M. Ultrafast terahertz conductivity dynamics in mesoporous TiO2: influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells. Journal of Physical Chemistry C , 2010, 114(2): 1365-1371
doi: 10.1021/jp908760r
[1] Tatiana A. SAVELIEVA, Marina N. KURYANOVA, Ekaterina V. AKHLYUSTINA, Kirill G. LINKOV, Gennady A. MEEROVICH, Victor B. LOSCHENOV. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Front. Optoelectron., 2020, 13(4): 360-370.
[2] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[3] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
[4] Yanjun ZHANG,Jinrui XU,Xinghu FU,Jinjun LIU,Yongsheng TIAN. Hybrid algorithm combining genetic algorithm with back propagation neural network for extracting the characteristics of multi-peak Brillouin scattering spectrum[J]. Front. Optoelectron., 2017, 10(1): 62-69.
[5] Bushra NAWAZ, Rameez ASIF. Impact of polarization mode dispersion and nonlinearities on 2-channel DWDM chaotic communication systems[J]. Front Optoelec, 2013, 6(3): 312-317.
[6] Muhammad Idrees AFRIDI, Jie ZHANG, Yousaf KHAN, Jiawei HAN, Aftab HUSSEIN, Shahab AHMAD. Impact of Rayleigh backscattering on single/dual feeder fiber WDM-PON architectures based on array waveguide gratings[J]. Front Optoelec, 2013, 6(1): 102-107.
[7] Duan LIU, Songnian FU, Ming TANG, Ping SHUM, Deming LIU. Rayleigh backscattering noise in single-fiber loopback duplex WDM-PON architecture[J]. Front Optoelec, 2012, 5(4): 435-438.
[8] Xiaoyan SUN, Peng HUANG, Jiefeng ZHAO, Li WEI, Nan ZHANG, Dengfeng KUANG, Xiaonong ZHU. Characteristic control of long period fiber grating (LPFG) fabricated by infrared femtosecond laser[J]. Front Optoelec, 2012, 5(3): 334-340.
[9] Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Surface-enhanced Raman scattering of sulfate ion based on Ag/Si nanostructure[J]. Front Optoelec Chin, 2011, 4(4): 378-381.
[10] Shilie ZHENG, Sixuan GE, Hao CHI, Xiaofeng JIN, Xianmin ZHANG. Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing[J]. Front Optoelec Chin, 2011, 4(3): 277-281.
[11] Zhiyong BAO, Li ZHANG, Yucheng WU. Silver nanoparticles and silver molybdate nanowires complex for surface-enhanced Raman scattering substrate[J]. Front Optoelec Chin, 2011, 4(2): 166-170.
[12] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
[13] Ziheng XU, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
[14] Deming LIU, Shuang LIU, Hairong LIU. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor[J]. Front Optoelec Chin, 2009, 2(2): 159-162.
[15] ZHAO Mingfu, LIAO Qiang, CHEN Yan, ZHONG Nianbing. Fiber sensor of online biomass testing[J]. Front. Optoelectron., 2008, 1(1-2): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed