|
|
Plasmonic light trapping for wavelength-scale silicon solar absorbers |
Yinan ZHANG1, Min GU1,2( ) |
1. Centre for Micro-Photonics, Faculty of Science, Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC 3122, Australia 2. Artificial-Intelligence Nanophotonics Laboratory, School of Science, RMIT University, Melbourne VIC 3001, Australia |
|
|
Abstract Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.
|
Keywords
solar cells
light trapping
plasmonic
ultrathin Si
wavelength-scale
|
Corresponding Author(s):
Min GU
|
Just Accepted Date: 18 February 2016
Online First Date: 29 March 2016
Issue Date: 05 April 2016
|
|
1 |
H A Atwater, A Polman. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
https://doi.org/10.1038/nmat2629
pmid: 20168344
|
2 |
M Gu, Z Ouyang, B Jia, N Stokes, X Chen, N Fahim, X Li, M Ventura, Z Shi. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 2012, 1(3-4): 235–248
https://doi.org/10.1515/nanoph-2012-0180
|
3 |
Y Zhang, N Stokes, B Jia, S Fan, M Gu. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific Reports, 2014, 4: 4939
https://doi.org/10.1038/srep04939
pmid: 24820403
|
4 |
Y Zhang, Z Ouyang, N Stokes, B Jia, Z Shi, M Gu. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 2012, 100(15): 151101
https://doi.org/10.1063/1.3703121
|
5 |
Y Zhang, X Chen, Z Ouyang, H Lu, B Jia, Z Shi, M Gu. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 2013, 3(4): 489–495
https://doi.org/10.1364/OME.3.000489
|
6 |
Y Zhang, B Jia, Z Ouyang, M Gu. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. Journal of Applied Physics, 2014, 116(12): 124303
https://doi.org/10.1063/1.4896486
|
7 |
D Derkacs, S Lim, P Matheu, W Mar, E Yu. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006, 89(9): 093103
https://doi.org/10.1063/1.2336629
|
8 |
C Eminian, F Haug, O Cubero, X Niquille, C Ballif. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 260–265
https://doi.org/10.1002/pip.1015
|
9 |
X Chen, B Jia, J K Saha, B Cai, N Stokes, Q Qiao, Y Wang, Z Shi, M Gu. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 2012, 12(5): 2187–2192
https://doi.org/10.1021/nl203463z
pmid: 22300399
|
10 |
M Lare, F Lenzmann, M Verschuuren, A Polman. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Applied Physics Letters, 2012, 101(22): 221110
https://doi.org/10.1063/1.4767997
|
11 |
K Nakayama, K Tanabe, H Atwater. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): 121904
https://doi.org/10.1063/1.2988288
|
12 |
F Beck, S Mokkapati, K Catchpole. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 500–504
https://doi.org/10.1002/pip.1006
|
13 |
Y Yang, S Pillai, H Mehrvarz, H Kampwerth, A Ho-Baillie, M Green. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101: 217–226
https://doi.org/10.1016/j.solmat.2012.02.009
|
14 |
T Temple, G Mahanama, H Reehal, D Bagnall. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1978–1985
https://doi.org/10.1016/j.solmat.2009.07.014
|
15 |
R Xu, X Wang, L Song, W Liu, A Ji, F Yang, J Li. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 2012, 20(5): 5061–5068
https://doi.org/10.1364/OE.20.005061
pmid: 22418311
|
16 |
X Chen, B Jia, Y Zhang, M Gu. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light, Science & Applications, 2013, 2(8): e92
https://doi.org/10.1038/lsa.2013.48
|
17 |
N Fahim, Z Ouyang, B Jia, Y Zhang, Z Shi, M Gu. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Applied Physics Letters, 2012, 101(26): 261102
https://doi.org/10.1063/1.4773038
|
18 |
N Fahim, Z Ouyang, Y Zhang, B Jia, Z Shi, M Gu. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Optical Materials Express, 2012, 2(2): 190–204
https://doi.org/10.1364/OME.2.000190
|
19 |
C Hägglund, M Zäch, G Petersson, B Kasemo. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Applied Physics Letters, 2008, 92(5): 053110
https://doi.org/10.1063/1.2840676
|
20 |
J Grandidier, D M Callahan, J N Munday, H A Atwater. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Advanced Materials, 2011, 23(10): 1272–1276
https://doi.org/10.1002/adma.201004393
pmid: 21381129
|
21 |
G Kang, H Park, D Shin, S Baek, M Choi, D H Yu, K Kim, W J Padilla. Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures. Advanced Materials, 2013, 25(18): 2617–2623
https://doi.org/10.1002/adma.201204596
pmid: 23529900
|
22 |
M L Brongersma, Y Cui, S Fan. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
https://doi.org/10.1038/nmat3921
pmid: 24751773
|
23 |
P Spinelli, A Polman. Light trapping in thin crystalline Si solar cells using surface Mie scatters. IEEE Journal of Photovoltaics, 2014, 4(2): 554–559
https://doi.org/10.1109/JPHOTOV.2013.2292744
|
24 |
I Kim, D S Jeong, W S Lee, W M Kim, T S Lee, D K Lee, J H Song, J K Kim, K S Lee. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Optics Express, 2014, 22(Suppl 6): A1431–A1439
https://doi.org/10.1364/OE.22.0A1431
pmid: 25607300
|
25 |
K X Wang, Z Yu, V Liu, Y Cui, S Fan. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters, 2012, 12(3): 1616–1619
https://doi.org/10.1021/nl204550q
pmid: 22356436
|
26 |
S Jeong, M D McGehee, Y Cui. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature Communications, 2013, 4: 2950
https://doi.org/10.1038/ncomms3950
pmid: 24335845
|
27 |
M S Branham, W C Hsu, S Yerci, J Loomis, S V Boriskina, B R Hoard, S E Han, G Chen. 15.7% efficient 10-mm-thick crystalline silicon solar cells using periodic nanostructures. Advanced Materials, 2015, 27(13): 2182–2188
https://doi.org/10.1002/adma.201405511
pmid: 25692399
|
28 |
J Y Kwon, D H Lee, M Chitambar, S Maldonado, A Tuteja, A Boukai. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Letters, 2012, 12(10): 5143–5147
https://doi.org/10.1021/nl3020445
pmid: 22947134
|
29 |
I Karakasoglu, K Wang, S Fan. Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells. ACS Photonics, 2015, 2(7): 883–889
https://doi.org/10.1021/acsphotonics.5b00081
|
30 |
Z Yu, A Raman, S Fan. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491–17496
https://doi.org/10.1073/pnas.1008296107
pmid: 20876131
|
31 |
FDTD solutions, Lumerical, Toronto, Canada
|
32 |
E Palik. Handbook of Optical Constants of Solids. London: Elsevier, 1988
|
33 |
M Green. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310
https://doi.org/10.1016/j.solmat.2008.06.009
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|