Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 277-282    https://doi.org/10.1007/s12200-016-0614-3
RESEARCH ARTICLE
Plasmonic light trapping for wavelength-scale silicon solar absorbers
Yinan ZHANG1, Min GU1,2()
1. Centre for Micro-Photonics, Faculty of Science, Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC 3122, Australia
2. Artificial-Intelligence Nanophotonics Laboratory, School of Science, RMIT University, Melbourne VIC 3001, Australia
 Download: PDF(682 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.

Keywords solar cells      light trapping      plasmonic      ultrathin Si      wavelength-scale     
Corresponding Author(s): Min GU   
Just Accepted Date: 18 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0614-3
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/277
Fig.1  Schematic diagram of the plasmonic solar cell structure and the simulation geometry. PML: perfectly matched layer; PBC: periodic boundary condition
Fig.2  Optimization map of the photocurrent as a function of the NP diameter and the space between the NPs
Fig.3  Spectra of the absorption in the (a) Si layer, (b) SiO2 layer with Ag NPs, (c) Ag reflector and (d) the reflection for the solar cells integrated with the optimized Ag NPs, referenced with the solar cells without Ag NPs
Fig.4  Electrical field distributions for the solar cells without Ag NPs at the wavelengths of (a) 400 nm and (b) 800 nm and those for the solar cells with the optimized Ag NPs at the wavelengths of (c) 394 nm and (d) 634 nm. The Si layers are highlighted by the white dash lines (Scale bar: 250 nm)
Fig.5  Optimized photocurrent density as a function of the Si thickness for the solar cells with and without Ag NP integration. The photocurrent enhancement is shown for reference
1 H A Atwater, A Polman. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
https://doi.org/10.1038/nmat2629 pmid: 20168344
2 M Gu, Z Ouyang, B Jia, N Stokes, X Chen, N Fahim, X Li, M Ventura, Z Shi. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 2012, 1(3-4): 235–248
https://doi.org/10.1515/nanoph-2012-0180
3 Y Zhang, N Stokes, B Jia, S Fan, M Gu. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific Reports, 2014, 4: 4939
https://doi.org/10.1038/srep04939 pmid: 24820403
4 Y Zhang, Z Ouyang, N Stokes, B Jia, Z Shi, M Gu. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 2012, 100(15): 151101
https://doi.org/10.1063/1.3703121
5 Y Zhang, X Chen, Z Ouyang, H Lu, B Jia, Z Shi, M Gu. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 2013, 3(4): 489–495
https://doi.org/10.1364/OME.3.000489
6 Y Zhang, B Jia, Z Ouyang, M Gu. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. Journal of Applied Physics, 2014, 116(12): 124303
https://doi.org/10.1063/1.4896486
7 D Derkacs, S Lim, P Matheu, W Mar, E Yu. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006, 89(9): 093103
https://doi.org/10.1063/1.2336629
8 C Eminian, F Haug, O Cubero, X Niquille, C Ballif. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 260–265
https://doi.org/10.1002/pip.1015
9 X Chen, B Jia, J K Saha, B Cai, N Stokes, Q Qiao, Y Wang, Z Shi, M Gu. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 2012, 12(5): 2187–2192
https://doi.org/10.1021/nl203463z pmid: 22300399
10 M Lare, F Lenzmann, M Verschuuren, A Polman. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Applied Physics Letters, 2012, 101(22): 221110
https://doi.org/10.1063/1.4767997
11 K Nakayama, K Tanabe, H Atwater. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): 121904
https://doi.org/10.1063/1.2988288
12 F Beck, S Mokkapati, K Catchpole. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 500–504
https://doi.org/10.1002/pip.1006
13 Y Yang, S Pillai, H Mehrvarz, H Kampwerth, A Ho-Baillie, M Green. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101: 217–226
https://doi.org/10.1016/j.solmat.2012.02.009
14 T Temple, G Mahanama, H Reehal, D Bagnall. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1978–1985
https://doi.org/10.1016/j.solmat.2009.07.014
15 R Xu, X Wang, L Song, W Liu, A Ji, F Yang, J Li. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 2012, 20(5): 5061–5068
https://doi.org/10.1364/OE.20.005061 pmid: 22418311
16 X Chen, B Jia, Y Zhang, M Gu. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light, Science & Applications, 2013, 2(8): e92
https://doi.org/10.1038/lsa.2013.48
17 N Fahim, Z Ouyang, B Jia, Y Zhang, Z Shi, M Gu. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Applied Physics Letters, 2012, 101(26): 261102
https://doi.org/10.1063/1.4773038
18 N Fahim, Z Ouyang, Y Zhang, B Jia, Z Shi, M Gu. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Optical Materials Express, 2012, 2(2): 190–204
https://doi.org/10.1364/OME.2.000190
19 C Hägglund, M Zäch, G Petersson, B Kasemo. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Applied Physics Letters, 2008, 92(5): 053110
https://doi.org/10.1063/1.2840676
20 J Grandidier, D M Callahan, J N Munday, H A Atwater. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Advanced Materials, 2011, 23(10): 1272–1276
https://doi.org/10.1002/adma.201004393 pmid: 21381129
21 G Kang, H Park, D Shin, S Baek, M Choi, D H Yu, K Kim, W J Padilla. Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures. Advanced Materials, 2013, 25(18): 2617–2623
https://doi.org/10.1002/adma.201204596 pmid: 23529900
22 M L Brongersma, Y Cui, S Fan. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
https://doi.org/10.1038/nmat3921 pmid: 24751773
23 P Spinelli, A Polman. Light trapping in thin crystalline Si solar cells using surface Mie scatters. IEEE Journal of Photovoltaics, 2014, 4(2): 554–559
https://doi.org/10.1109/JPHOTOV.2013.2292744
24 I Kim, D S Jeong, W S Lee, W M Kim, T S Lee, D K Lee, J H Song, J K Kim, K S Lee. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Optics Express, 2014, 22(Suppl 6): A1431–A1439
https://doi.org/10.1364/OE.22.0A1431 pmid: 25607300
25 K X Wang, Z Yu, V Liu, Y Cui, S Fan. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Letters, 2012, 12(3): 1616–1619
https://doi.org/10.1021/nl204550q pmid: 22356436
26 S Jeong, M D McGehee, Y Cui. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature Communications, 2013, 4: 2950
https://doi.org/10.1038/ncomms3950 pmid: 24335845
27 M S Branham, W C Hsu, S Yerci, J Loomis, S V Boriskina, B R Hoard, S E Han, G Chen. 15.7% efficient 10-mm-thick crystalline silicon solar cells using periodic nanostructures. Advanced Materials, 2015, 27(13): 2182–2188
https://doi.org/10.1002/adma.201405511 pmid: 25692399
28 J Y Kwon, D H Lee, M Chitambar, S Maldonado, A Tuteja, A Boukai. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Letters, 2012, 12(10): 5143–5147
https://doi.org/10.1021/nl3020445 pmid: 22947134
29 I Karakasoglu, K Wang, S Fan. Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells. ACS Photonics, 2015, 2(7): 883–889
https://doi.org/10.1021/acsphotonics.5b00081
30 Z Yu, A Raman, S Fan. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491–17496
https://doi.org/10.1073/pnas.1008296107 pmid: 20876131
31 FDTD solutions, Lumerical, Toronto, Canada
32 E Palik. Handbook of Optical Constants of Solids. London: Elsevier, 1988
33 M Green. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310
https://doi.org/10.1016/j.solmat.2008.06.009
[1] Yu BI, Lingling HUANG, Xiaowei LI, Yongtian WANG. Magnetically controllable metasurface and its application[J]. Front. Optoelectron., 2021, 14(2): 154-169.
[2] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[3] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[4] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[5] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[6] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[7] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[8] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[9] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[10] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[11] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[12] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[13] Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
[14] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[15] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed