|
|
A review of recent progress in plasmon-assisted nanophotonic devices |
Jian WANG() |
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Plasmonics squeezes light into dimensions far beyond the diffraction limit by coupling the light with the surface collective oscillation of free electrons at the interface of a metal and a dielectric. Plasmonics, referred to as a promising candidate for high-speed and high-density integrated circuits, bridges microscale photonics and nanoscale electronics and offers similar speed of photonic devices and similar dimension of electronic devices. Various types of passive and active surface plasmon polariton (SPP) enabled devices with enhanced deep-subwavelength mode confinement have attracted increasing interest including waveguides, lasers and biosensors. Despite the trade-off between the unavoidable metal absorption loss and extreme light concentration, the ever-increasing research efforts have been devoted to seeking low-loss plasmon-assisted nanophotonic devices with deep-subwavelength mode confinement, which might find potential applications in high-density nanophotonic integration and efficient nonlinear signal processing. In addition, other plasmon-assisted nanophotonic devices might also promote grooming functionalities and applications benefiting from plasmonics. In this review article, we give a brief overview of our recent progress in plasmon-assisted nanophotonic devices and their wide applications, including long-range hybrid plasmonic slot (LRHPS) waveguide, ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality (Q) factor and small mode volume, compact active hybrid plasmonic ring resonator for deep-subwavelength lasing applications, fabricated hybrid plasmonic waveguides for terabit-scale photonic interconnection, and metamaterials-based broadband and selective generation of orbital angular momentum (OAM) carrying vector beams. It is believed that plasmonics opens possible new ways to facilitate next chip-scale key devices and frontier technologies.
|
Keywords
plasmonics
surface plasmon polariton (SPP)
nanophotonic devices
plasmonic waveguide
photonic interconnection
metamaterials
|
Corresponding Author(s):
Jian WANG
|
Online First Date: 25 August 2014
Issue Date: 09 September 2014
|
|
1 |
Brongersma M L, Hartman J W, Atwater H H. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chain-arrays below the diffraction limit. MRS Proceedings, 1999, 582: H10.5
|
2 |
Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7-8): 20–27 doi: 10.1016/S1369-7021(06)71572-3
|
3 |
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193 doi: 10.1126/science.1114849 pmid: 16410515
|
4 |
Brongersma M L, Shalaev V M. Applied physics. The case for plasmonics. Science, 2010, 328(5977): 440–441 doi: 10.1126/science.1186905 pmid: 20413483
|
5 |
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204 doi: 10.1038/nmat2630 pmid: 20168343
|
6 |
Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539–554 doi: 10.1103/PhysRev.182.539
|
7 |
Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(8): 5186–5201 doi: 10.1103/PhysRevB.33.5186 pmid: 9939016
|
8 |
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York: Springer-Verlag, 1988
|
9 |
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824–830 doi: 10.1038/nature01937 pmid: 12917696
|
10 |
Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry. Physics Today, 2008, 61(5): 44–50 doi: 10.1063/1.2930735
|
11 |
Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91 doi: 10.1038/nphoton.2009.282
|
12 |
Zhang J, Zhang L. Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4(2): 157–321 doi: 10.1364/AOP.4.000157
|
13 |
Han Z, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 2013, 76(1): 016402 doi: 10.1088/0034-4885/76/1/016402 pmid: 23249644
|
14 |
Oulton R F, Bartal G, Pile D F P, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 2008, 10(10): 105018 doi: 10.1088/1367-2630/10/10/105018
|
15 |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America), 2007, JThD112
|
16 |
Alam M Z, Aitchison J S, Mojahedi M. A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser & Photonics Reviews, 2014, 8(3): 394–408 doi: 10.1002/lpor.201300168
|
17 |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500 doi: 10.1038/nphoton.2008.131
|
18 |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632 doi: 10.1038/nature08364 pmid: 19718019
|
19 |
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators. B, Chemical, 1999, 54(1–2): 3–15 doi: 10.1016/S0925-4005(98)00321-9
|
20 |
Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics, 2009, 1(3): 484–588 doi: 10.1364/AOP.1.000484
|
21 |
Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650 doi: 10.1364/OPEX.13.006645 pmid: 19498679
|
22 |
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653 doi: 10.1364/OE.17.016646 pmid: 19770880
|
23 |
Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966 doi: 10.1364/OE.18.017958 pmid: 20721182
|
24 |
Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express, 2010, 18(3): 2808–2813 doi: 10.1364/OE.18.002808 pmid: 20174109
|
25 |
Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393 doi: 10.1364/OE.19.008379 pmid: 21643089
|
26 |
Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439 doi: 10.1364/OE.21.001430 pmid: 23389124
|
27 |
Bian Y, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920 doi: 10.1364/OE.21.023907 pmid: 24104301
|
28 |
Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Optics Express, 2013, 21(24): 29544–29557 doi: 10.1364/OE.21.029544 pmid: 24514506
|
29 |
Chu H S, Li E P, Bai P, Hegde R. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103 doi: 10.1063/1.3437088
|
30 |
Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544 doi: 10.1364/OE.20.020535 pmid: 23037100
|
31 |
Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311 doi: 10.1109/JPHOT.2013.2256887
|
32 |
Xiang C, Wang J, Chan C K. Ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality factor and small mode volume. In: Proceedings of CLEO: Science and Innovations. Optical Society of America, 2013, JTu4A. 59
|
33 |
Xiang C, Chan C K, Wang J. Proposal and numerical study of ultra-compact active hybrid plasmonic resonator for sub-wavelength lasing applications. Scientific Reports, 2014, 4: 3720 doi: 10.1038/srep03720 pmid: 24430254
|
34 |
Du J, Gui C, Li C, Yang Q, Wang J. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO: Applications and Technology. Optical Society of America, 2014, JTh2A. 35
|
35 |
Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934 doi: 10.1364/OL.38.000932 pmid: 23503264
|
36 |
Zhao Z, Wang J, Li S, Willner A E. Selective broadband generation of orbital angular momentum carrying vector beams using metamaterials. In: Proceedings of CLEO: QELS Fundamental Science. Optical Society of America, 2013, QM4A. 7
|
37 |
Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881 doi: 10.1103/PhysRev.106.874
|
38 |
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211 doi: 10.1364/OL.29.001209 pmid: 15209249
|
39 |
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219 doi: 10.1038/nphoton.2009.25
|
40 |
Spano R, Galan J V, Sanchis P, Martinez A, Marti J, Pavesi L. Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals.In: Proceedings of 5th IEEE International Conference on Group IV Photonics. IEEE, 2008, 314–316
|
41 |
Berini P. Figures of merit for surface plasmon waveguides. Optics Express, 2006, 14(26): 13030–13042 doi: 10.1364/OE.14.013030 pmid: 19532198
|
42 |
Martínez A, Blasco J, Sanchis P, Galán J V, García-Rupérez J, Jordana E, Gautier P, Lebour Y, Hernández S, Guider R, Daldosso N, Garrido B, Fedeli J M, Pavesi L, Martí J, Spano R. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters, 2010, 10(4): 1506–1511 doi: 10.1021/nl9041017 pmid: 20356059
|
43 |
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846 doi: 10.1038/nature01939 pmid: 12917698
|
44 |
Oxborrow M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1209–1218 doi: 10.1109/TMTT.2007.897850
|
45 |
Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370–4379 doi: 10.1103/PhysRevB.6.4370
|
46 |
Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald A, Mahajan V N, Van Stryland E W. Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry. New York: McGraw-Hill, Inc., 2009
|
47 |
Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties. Applied Physics Letters, 2010, 96(4): 043109 doi: 10.1063/1.3294300
|
48 |
Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten F W M, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, N?tzel R, Smit M K. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1(10): 589–594 doi: 10.1038/nphoton.2007.171
|
49 |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110–1112 doi: 10.1038/nature08318 pmid: 19684572
|
50 |
Xiao Y F, Li B B, Jiang X, Hu X, Li Y, Gong Q. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics. B, Atomic, Molecular, and Optical Physics, 2010, 43(3): 035402 doi: 10.1088/0953-4075/43/3/035402
|
51 |
Zhu L. Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technology Letters, 2010, 22(8): 535–537 doi: 10.1109/LPT.2010.2041923
|
52 |
Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917–920 doi: 10.1021/nl050440u pmid: 15884894
|
53 |
Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189 doi: 10.1103/PhysRevA.45.8185 pmid: 9906912
|
54 |
Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313 doi: 10.1002/lpor.200810007
|
55 |
Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
|
56 |
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456 doi: 10.1364/OPEX.12.005448 pmid: 19484105
|
57 |
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496 doi: 10.1038/nphoton.2012.138
|
58 |
Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 1996, 21(23): 1948–1950 doi: 10.1364/OL.21.001948 pmid: 19881855
|
59 |
Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57
|
60 |
Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Physical Review Letters, 2006, 96(23): 233901 doi: 10.1103/PhysRevLett.96.233901 pmid: 16803379
|
61 |
Kang M, Chen J, Gu B, Li Y, Vuong L T, Wang H T. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Physical Review A, 2012, 85(3): 035801 doi: 10.1103/PhysRevA.85.035801
|
62 |
Poon A W, Luo X, Chen H, Fernandes G E, Chang R K. Microspiral resonators for integrated photonics. Optics and Photonics News, 2008, 19(10): 48–53 doi: 10.1364/OPN.19.10.000048
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|