Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 138-150    https://doi.org/10.1007/s12200-016-0632-1
REVIEW ARTICLE
Subwavelength electromagnetics
Xiangang LUO()
State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
 Download: PDF(4905 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Subwavelength electromagnetics is a discipline that deals with light-matter interaction at subwavelength scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although the history can be dated back to almost one hundred years ago, the flourish of these researching areas have been no more than 30 years. In this paper, we gave a brief review of the history, current status and future trends of subwavelength electromagnetics. In particular, the milestones related with metamaterials, plasmonics, metasurfaces and photonic crystals are highlighted.

Keywords electromagnetics      subwavelength scale      metamaterials      plasmonics      photonic crystals     
Corresponding Author(s): Xiangang LUO   
Just Accepted Date: 16 March 2016   Online First Date: 28 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0632-1
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/138
Fig.1  Brief history of the subwavelength electromagnetics
Fig.2  Various transmissive and reflective cloaks based on transformation optics [17,2325]
Fig.3  Sub-diffraction imaging and lithography based on hyperlens. (a) Schematic of the hyperlens for far-field imaging; (b) cross-section of the scanning electron microscopy (SEM) of the hyperlens for plasmonic lithography; (c) SEM of the patterns on the mask and photoresist (Pr)
Fig.4  (a) and (b) Schematic of the ultrathin absorber based on the combination of AMC and resistive sheet; (c) ultrathin wide angle absorber based on high index metamaterials
Fig.5  Metasurface-based ultra-broadband coherent perfect absorber. (a) Schematic description [55]; (b) experimental demonstration in the microwave regime [56]
Fig.6  Active metasurface for beam scanning in the microwave frequency. The overall thickness of the antenna is 3.89 mm, and the operational frequency is designed to be 5.4 GHz. The mean insertion loss is less than 4.5 dB
Fig.7  Schematic of the anisotropic meta-mirror in (a) x and y directions; (b) schematic of polarization transformation for a p-polarization incident wave; (c) and (d) reflection coefficients for co-polarized and cross-polarized components for two microwave samples [76,78]
Fig.8  Catenary optics of perfect optical elements. (a) Schematic of the catenary aperture; (b) catenary array for perfect OAM generation; (c) SEM image of the catenary lens; (d) and (e) measurement of the Bessel beam generator and flat lens carrying OAM
Fig.9  Plasmonic reflective lenses for 32 and 22 nm lithography nodes. (a) Schematic of plasmonic modes in the cavity lens; (b) simulation results; (c) cross section of the fabricated lens; (d) SEM of the fabricated dense lines of 32 nm half-pitch; (e) cross section of the dense lines in (d)
Fig.10  Future trends of subwavelength electromagnetics
1 Lorentz H A. Collected Papers. Hague, 1937
2 Jackson J D. Classical Electrodynamics.Hoboken: Wiley, 1999
3 Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section.USA: SciTech Publishing, 2004
4 Zhou B, Kane T J, Dixon G J, Byer R L. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Optics Letters, 1985, 10(2): 62–64
https://doi.org/10.1364/OL.10.000062 pmid: 19724346
5 Gordon R G. Criteria for choosing transparent conductors. MRS Bulletin, 2000, 25(8): 52–57
https://doi.org/10.1557/mrs2000.151
6 West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews, 2010, 4(6): 795–808
https://doi.org/10.1002/lpor.200900055
7 De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720
https://doi.org/10.1021/nn100343f pmid: 20384321
8 Feynman R P. There’s plenty of room at the bottom. Engineering and Science, 1960, 23: 22–36
9 Brongersma M L. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178: 9–36
https://doi.org/10.1039/C5FD90020D pmid: 25968246
10 Veselago V G. The electrodynamics of substances with simultaneously negative values of e and m. Soviet Physics- Uspekhi, 1968, 10(4): 509–514
https://doi.org/10.1070/PU1968v010n04ABEH003699
11 Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
https://doi.org/10.1103/PhysRevLett.76.4773 pmid: 10061377
12 Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
https://doi.org/10.1109/22.798002
13 Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
https://doi.org/10.1103/PhysRevLett.84.4184 pmid: 10990641
14 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
https://doi.org/10.1126/science.1058847 pmid: 11292865
15 Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
https://doi.org/10.1103/PhysRevLett.85.3966 pmid: 11041972
16 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
https://doi.org/10.1126/science.1125907 pmid: 16728597
17 Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
https://doi.org/10.1126/science.1133628 pmid: 17053110
18 Emerson D T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2267–2273
https://doi.org/10.1109/22.643830
19 Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881
https://doi.org/10.1103/PhysRev.106.874
20 Luo X. Principles of electromagnetic waves in metasurfaces. Science China-Physics, Mechanics & Astronomy, 2015, 58(9): 594201
https://doi.org/10.1007/s11433-015-5688-1
21 Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. International Journal of Antennas and Propagation, 2015, 16: 204127
22 Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
https://doi.org/10.1126/science.1126493 pmid: 16728596
23 Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Materials, 2009, 8(7): 568–571
https://doi.org/10.1038/nmat2461 pmid: 19404237
24 Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R. Broadband ground-plane cloak. Science, 2009, 323(5912): 366–369
https://doi.org/10.1126/science.1166949 pmid: 19150842
25 Gabrielli L H, Cardenas J, Poitras C B, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 2009, 3(8): 461–463
https://doi.org/10.1038/nphoton.2009.117
26 Hashemi H, Zhang B, Joannopoulos J D, Johnson S G. Delay-bandwidth and delay-loss limitations for cloaking of large objects. Physical Review Letters, 2010, 104(25): 253903
https://doi.org/10.1103/PhysRevLett.104.253903 pmid: 20867381
27 Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Physical Review Letters, 2008, 101(20): 203901
https://doi.org/10.1103/PhysRevLett.101.203901 pmid: 19113341
28 Zigoneanu L, Popa B I, Cummer S A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials, 2014, 13(4): 352–355
https://doi.org/10.1038/nmat3901 pmid: 24608143
29 Han T, Bai X, Gao D, Thong J T L, Li B, Qiu C W. Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112(5): 054302
https://doi.org/10.1103/PhysRevLett.112.054302 pmid: 24580600
30 Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349(6254): 1310–1314
https://doi.org/10.1126/science.aac9411 pmid: 26383946
31 Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Scientific Reports, 2015, 5: 9822
https://doi.org/10.1038/srep09822 pmid: 25959663
32 Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5: 15781
https://doi.org/10.1038/srep15781 pmid: 26503607
33 Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345
https://doi.org/10.1126/science.aaa2494 pmid: 25700175
34 Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
https://doi.org/10.1126/science.1137368 pmid: 17379801
35 Jacob Z, Alekseyev L V, Narimanov E. Optical Hyperlens: far-field imaging beyond the diffraction limit. Optics Express, 2006, 14(18): 8247–8256
https://doi.org/10.1364/OE.14.008247 pmid: 19529199
36 Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Optics Letters, 2007, 32(23): 3432–3434
https://doi.org/10.1364/OL.32.003432 pmid: 18059957
37 Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957
https://doi.org/10.1038/nphoton.2013.243
38 Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256
https://doi.org/10.1002/adom.201400596
39 Engheta N. Thin absorbing screens using metamaterial surfaces. IEEE Antennas and Propagation Society International Symposium, 2002, 2: 392–395
40 Sievenpiper D F, Schaffner J H, Song H J, Loo R Y, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722
https://doi.org/10.1109/TAP.2003.817558
41 Munk B A. Frequency Selective Surfaces.New York: Wiley, 2000
42 Senior T. Approximate boundary conditions. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 826–829
https://doi.org/10.1109/TAP.1981.1142657
43 Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8(12): 889–898
https://doi.org/10.1038/nphoton.2014.247
44 Salisbury W W. Absorbent body for electromagnetic waves. United States Patent, 1952, 2599944
45 Sievenpiper D F. High-impedance electromagnetic surfaces. Dissertation for the Doctoral Degree. Los Angeles: University of California, 1999
46 Pu M, Feng Q, Hu C, Luo X. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7(4): 733–738
https://doi.org/10.1007/s11468-012-9365-1
47 Sievenpiper D, Zhang L, Broas R, Alexopolous N, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074
https://doi.org/10.1109/22.798001
48 Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
https://doi.org/10.1103/PhysRevLett.100.207402 pmid: 18518577
49 Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Optics Express, 2011, 19(18): 17413–17420
https://doi.org/10.1364/OE.19.017413 pmid: 21935107
50 Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce J M, Güney D Ö. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific Reports, 2014, 4: 4901
https://doi.org/10.1038/srep04901 pmid: 24811322
51 Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104
https://doi.org/10.1063/1.3442904
52 Feng Q, Pu M, Hu C, Luo X. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Optics Letters, 2012, 37(11): 2133–2135
https://doi.org/10.1364/OL.37.002133 pmid: 22660145
53 Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230–1234
https://doi.org/10.1109/8.884491
54 Brewitt-Taylor C R. Limitation on the bandwidth of artificial perfect magnetic conductor surfaces. IET Microwaves, Antennas & Propagation, 2007, 1(1): 255–260
55 Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express, 2012, 20(3): 2246–2254
https://doi.org/10.1364/OE.20.002246 pmid: 22330464
56 Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(22): 220301
https://doi.org/10.1103/PhysRevB.91.220301
57 Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W. Perfect electromagnetic absorption at one-atom-thick scale. Applied Physics Letters, 2015, 107(18): 181112
https://doi.org/10.1063/1.4935427
58 Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483
https://doi.org/10.1364/AOP.1.000438
59 Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317(5845): 1698–1702
https://doi.org/10.1126/science.1133268 pmid: 17885123
60 Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Physical Review Letters, 2002, 89(21): 213902
https://doi.org/10.1103/PhysRevLett.89.213902 pmid: 12443413
61 Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J, Ebbesen T W. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820–822
https://doi.org/10.1126/science.1071895 pmid: 12077423
62 Xu H, Zhao Z, Lv Y, Du C, Luo X. Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. International Journal of Infrared and Millimeter Waves, 2008, 29(5): 493–498
https://doi.org/10.1007/s10762-008-9344-y
63 Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nature Materials, 2011, 10(3): 216–222
https://doi.org/10.1038/nmat2950 pmid: 21278741
64 Wang M, Huang C, Pu M, Luo X. Reducing side lobe level of antenna using frequency selective surface superstrate. Microwave and Optical Technology Letters, 2015, 57(8): 1971–1975
https://doi.org/10.1002/mop.29240
65 Ma X, Pan W, Huang C, Pu M, Wang Y, Zhao B, Cui J, Wang C, Luo X. An active metamaterial for polarization manipulating. Advanced Optical Materials, 2014, 2(10): 945–949
https://doi.org/10.1002/adom.201400212
66 Ma X, Huang C, Pan W, Zhao B, Cui J, Luo X. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 2307–2311
https://doi.org/10.1109/TAP.2014.2301841
67 Pan W, Huang C, Chen P, Ma X, Hu C, Luo X. A low-RCS and high-gain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945–949
https://doi.org/10.1109/TAP.2013.2291008
68 Pan W, Huang C, Chen P, Pu M, Ma X, Luo X. A beam steering horn antenna using active frequency selective surface. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218–6223
https://doi.org/10.1109/TAP.2013.2280592
69 Huang C, Pan W, Ma X, Zhao B, Cui J, Luo X. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810
https://doi.org/10.1109/TAP.2015.2479648
70 Young L, Robinson L A, Hacking C. Meander-line polarizer. IEEE Transactions on Antennas and Propagation, 1973, 21(3): 376–378
https://doi.org/10.1109/TAP.1973.1140503
71 Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Applied Physics Letters, 1983, 42(6): 492–494
https://doi.org/10.1063/1.93979
72 Ma X, Huang C, Pu M, Wang Y, Zhao Z, Wang C, Luo X. Dual-band asymmetry chiral metamaterial based on planar spiral structure. Applied Physics Letters, 2012, 101(16): 161901
https://doi.org/10.1063/1.4756901
73 Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X. Dual-band 90° polarization rotator using twisted split ring resonators array. Optics Communications, 2013, 291: 345–348
https://doi.org/10.1016/j.optcom.2012.10.046
74 Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908
https://doi.org/10.1103/PhysRevLett.99.063908 pmid: 17930829
75 Pors A, Nielsen M G, Valle G D, Willatzen M, Albrektsen O, Bozhevolnyi S I. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters, 2011, 36(9): 1626–1628
https://doi.org/10.1364/OL.36.001626 pmid: 21540949
76 Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, 102(13): 131906
https://doi.org/10.1063/1.4799162
77 Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307
https://doi.org/10.1126/science.1235399 pmid: 23686344
78 Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Scientific Reports, 2015, 5: 8434
https://doi.org/10.1038/srep08434 pmid: 25678280
79 Cardano F, Marrucci L. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778
https://doi.org/10.1038/nphoton.2015.232
80 Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5: 10365
https://doi.org/10.1038/srep10365 pmid: 25988213
81 Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1984, 392(1802): 45–57
82 Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330
https://doi.org/10.1063/1.1539300
83 Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
84 Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
https://doi.org/10.1126/science.1214686 pmid: 22194414
85 Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances, 2015, 1(9): e1500396
https://doi.org/10.1126/sciadv.1500396 pmid: 26601283
86 Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection. Scientific Reports, 2015, 5: 17733
https://doi.org/10.1038/srep17733 pmid: 26635228
87 Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X. Catenary nanostructures as compact Bessel beam generators. Scientific Reports, 2016, 6: 20524
https://doi.org/10.1038/srep20524 pmid: 26843142
88 Wang Y, Pu M, Hu C, Zhao Z, Wang C, Luo X. Dynamic manipulation of polarization states using anisotropic meta-surface. Optics Communications, 2014, 319(0): 14–16
https://doi.org/10.1016/j.optcom.2013.12.043
89 Shi J, Fang X, Rogers E T F, Plum E, MacDonald K F, Zheludev N I. Coherent control of Snell’s law at metasurfaces. Optics Express, 2014, 22(17): 21051–21060
https://doi.org/10.1364/OE.22.021051 pmid: 25321305
90 Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X. Dynamic control of the extraordinary optical scattering in semi-continuous two-dimensional metamaterials. Advanced Optical Materials, 2016, doi: 10.1002/adom.201500713
https://doi.org/10.1002/adom.201500713
91 Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007
92 Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics Journal, 2012, 4(2): 590–595
https://doi.org/10.1109/JPHOT.2012.2189436
93 Polo J A Jr, Lakhtakia A. Surface electromagnetic waves: a review. Laser & Photonics Reviews, 2011, 5(2): 234–246
https://doi.org/10.1002/lpor.200900050
94 Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Scientific Reports, 2015, 5: 15320
https://doi.org/10.1038/srep15320 pmid: 26477856
95 Yao H, Yu G, Yan P, Chen X, Luo X. Patterining sub 100 nm isolated patterns with 436 nm lithography. In: Proceedings of 2003 International Microprocesses and Nanotechnology Conference. 2003, 7947638
96 Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Applied Physics Letters, 2004, 84(23): 4780–4782
https://doi.org/10.1063/1.1760221
97 Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance. Optics Express, 2004, 12(14): 3055–3065
https://doi.org/10.1364/OPEX.12.003055 pmid: 19483824
98 Wang C, Gao P, Zhao Z, Yao N, Wang Y, Liu L, Liu K, Luo X. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Optics Express, 2013, 21(18): 20683–20691
https://doi.org/10.1364/OE.21.020683 pmid: 24103941
99 Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812
https://doi.org/10.1039/C5NR05153C pmid: 26507847
100 Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Applied Physics Letters, 2015, 106(9): 093110
https://doi.org/10.1063/1.4914000
101 Coles J A. Some reflective properties of the tapetum lucidum of the cat’s eye. The Journal of Physiology, 1971, 212(2): 393–409
https://doi.org/10.1113/jphysiol.1971.sp009331 pmid: 5548017
102 Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X. Achromatic flat optical components via compensation between structure and material dispersions. Scientific Reports, 2016, 6: 19885
https://doi.org/10.1038/srep19885 pmid: 26794855
103 Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews, 2015, 9(6): 713–719
https://doi.org/10.1002/lpor.201500182
104 Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X. Super-resolution optical telescopes with local light diffraction shrinkage. Scientific Reports, 2015, 5: 18485
https://doi.org/10.1038/srep18485 pmid: 26677820
105 Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y. Two-surface-plasmon-polariton-absorption based nanolithography. Applied Physics Letters, 2013, 102(6): 063113
https://doi.org/10.1063/1.4792591
106 Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 2009, 95(4): 041106
https://doi.org/10.1063/1.3184594
107 Sheng C, Liu H, Wang Y, Zhu S N, Genov D A. Trapping light by mimicking gravitational lensing. Nature Photonics, 2013, 7(11): 902–906
https://doi.org/10.1038/nphoton.2013.247
108 Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673
https://doi.org/10.1103/RevModPhys.77.633
109 Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298
https://doi.org/10.1103/RevModPhys.82.2257
110 Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878
https://doi.org/10.1103/PhysRev.124.1866
111 Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715
https://doi.org/10.1038/nmat2810 pmid: 20733610
112 Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Optics Express, 2013, 21(1): 992–1001
https://doi.org/10.1364/OE.21.000992 pmid: 23388993
113 Pu M, Song M, Yu H, Hu C, Wang M, Wu X, Luo J, Zhang Z, Luo X. Fano resonance induced by mode coupling in all-dielectric nanorod array. Applied Physics Express, 2014, 7(3): 032002
https://doi.org/10.7567/APEX.7.032002
114 Chen S, Jin S, Gordon R. Subdiffraction focusing enabled by a fano resonance. Physical Review X, 2014, 4(3): 031021
https://doi.org/10.1103/PhysRevX.4.031021
115 Song M, Wang C, Zhao Z, Pu M, Liu L, Zhang W, Yu H, Luo X. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 2016, 8(3): 1635–1641
https://doi.org/10.1039/C5NR06504F pmid: 26691553
116 McPhedran R C, Parker A R. Biomimetics: lessons on optics from nature’s school. Physics Today, 2015, 68(6): 32–37
https://doi.org/10.1063/PT.3.2816
[1] Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU. Topological photonic crystals: a review[J]. Front. Optoelectron., 2020, 13(1): 50-72.
[2] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[3] Xiangkun KONG, Junyi XU, Jin-jun MO, Shaobin LIU. Broadband and conformal metamaterial absorber[J]. Front. Optoelectron., 2017, 10(2): 124-131.
[4] Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
[5] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[6] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[7] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[8] Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
[9] Yinghui GUO, Lianshan YAN, Wei PAN, Bin LUO, Xiantao ZHANG, Xiangang LUO. Misalignments among stacked layers of metamaterial terahertz absorbers[J]. Front Optoelec, 2014, 7(1): 53-58.
[10] Zhenyu YANG, Peng ZHANG, Peiyuan XIE, Lin WU, Zeqin LU, Ming ZHAO. Polarization properties in helical metamaterials[J]. Front Optoelec, 2012, 5(3): 248-255.
[11] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed