Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 93-98    https://doi.org/10.1007/s12200-015-0499-6
RESEARCH ARTICLE
Enhanced absorption of solar cell made of photonic crystal by geometrical design
Asma OUANOUGHI,Abdesselam HOCINI(),Djamel KHEDROUCHE
Laboratoire d’Analyse des Signaux et Systèmes, Department of Electronics, University of Mohamed Boudiaf of M’sila BP.166, Route Ichebilia, M’sila 28000, Algeria
 Download: PDF(438 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, via numerical simulation we designed the geometry of solar cell made by one-dimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated amorphous silicon (a-Si:H)) in order to enhance its absorption. The absorption characteristics of light in the solar cell structures are simulated by using finite-difference time-domain (FDTD) method. The calculation results show that the enhancement of absorption in patterned structure is apparent comparing to the unpatterned one, which proves the ability of the structure to produce photonic crystal solar cell. We found solar cell geometries as a 2D photonic crystal enable to increase the absorption between 380 and 750 nm.

Keywords finite-difference time-domain      two-dimensional (2D) photonic crystals      solar cell     
Corresponding Author(s): Abdesselam HOCINI   
Just Accepted Date: 12 June 2015   Online First Date: 17 August 2015    Issue Date: 18 March 2016
 Cite this article:   
Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0499-6
https://academic.hep.com.cn/foe/EN/Y2016/V9/I1/93
Fig.1  (a) Structure of solar cell made by unpatterned layer on a glass substrate; (b) one-dimensional photonic crystal (1D PhC); (c) two-dimensional photonic crystal (2D PhC), with a square and triangular array of circular holes
Fig.2  Absorption spectra of the unpatterned layer of Si and a-Si:H with thickness H = 100 nm
Fig.3  Integrated absorption efficiency of a 100 nm thick a-Si:H layer in glass, as a function of the 1D PhC parameters L (in μm) and ff (in %)
Fig.4  Absorption spectra of 1D PhCs made of Si and a-Si:H with the same thickness H = 100 nm
Fig.5  Absorption spectra of 2D PhC Si square array of circular holes with different lattice constants (L) for thickness H = 100 nm (Optical simulation performed under normal incidence)
Fig.6  Absorption spectra of 2D PhC Si triangular array of circular holes with different lattice constants (L) for thickness H = 100 nm (Optical simulation performed under normal incidence)
Fig.7  Effect of 2D PhC square array of circular holes in TE mode, with a fixed filling factor and varying lattice constants (L) on the absorption spectra of a-Si:H layer
Fig.8  Effect of 2D PhC triangular array of circular holes, with a fixed filling factor and varying lattice constants (L) on the absorption spectra of a- Si:H layer
1 Nelson J. The Physics of Solar Cells. London: Imperial College Press, 2003
2 Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
https://doi.org/10.1038/nmat2629
3 Pala R A, White J, Barnard E, Liu J, Brongersma M L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509
https://doi.org/10.1002/adma.200900331
4 Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Applied Physics Letters, 2006, 89(11): 111111
https://doi.org/10.1063/1.2349845
5 Seassal C, Park Y, Fave A, Drouard E, Fourmond E, Kaminski A, Lemiti M, Letartre X, Viktorovitch P. Photonic crystal assistedultra-thin siliconphotovoltaic solarcell. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 7002: 700207
https://doi.org/10.1117/12.781284
6 Zanotto S, Liscidini M, Andreani L C. Light trapping regimes in thin-film silicon solar cells with a photonic pattern. Optics Express, 2010, 18(5): 4260–4274
https://doi.org/10.1364/OE.18.004260
7 Gomard G, Drouard E, Letartre X, Meng X, Kaminski A, Fave A, Lemiti M, Garcia-Caurel E, Seassal C. Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells. Journal of Applied Physics, 2010, 108(12): 123102
https://doi.org/10.1063/1.3506702
8 Domınguez S, García O, Ezquer M, Rodríguez M J, Lagunas A R, Pérez-Conde J, Bravo J . Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells. Photonics and Nanostructures– Fundamentals and Applications, 2012, 10(1): 46–53
https://doi.org/10.1016/j.photonics.2011.07.001
9 Papet P, Nichiporuk O, Kaminski A, Rozier Y, Kraiem J, Lelievre J F, Chaumartin A, Fave A, Lemiti M. Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Solar Energy Materials and Solar Cells, 2006, 90(15): 2319–2328
https://doi.org/10.1016/j.solmat.2006.03.005
10 Bermel P, Luo C, Zeng L, Kimerling L C, Joannopoulos J D. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Optics Express, 2007, 15(25): 16986–17000
https://doi.org/10.1364/OE.15.016986
11 El Daif O, Drouard E, Gomard G, Kaminski A, Fave A, Lemiti M, Ahn S, Kim S, Roca I, Cabarrocas P, Jeon H, Seassal C. Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell. Optics Express, 2010, 18(S3): A293–A299
https://doi.org/10.1364/OE.18.00A293
12 Bielawny A, Üpping J, Wehrspohn R B. Spectral properties of intermediate reflectors in micromorph tandem cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1909–1912
https://doi.org/10.1016/j.solmat.2009.07.012
13 RSoft Design Group. FullWAVE, Inc. 200 Executive Blvd. Ossining, NY 10562
14 El Daif O, Drouard E, Gomard G, Meng X, Kaminski A, Fave A, Lemiti M, Caurel E G, Roca I, Cabarrocas P, Ahn S, Jeon H, Seassal C. Absorbing photonic crystals for thin film photovoltaics. Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7713: 771308
https://doi.org/10.1117/12.854035
[1] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[2] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[3] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[4] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[5] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[6] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[7] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[8] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[9] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[10] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[11] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
[12] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[13] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[14] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[15] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed