Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 306-311    https://doi.org/10.1007/s12200-016-0599-y
RESEARCH ARTICLE
Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell
Zhuo DENG1,Jiqiang NING1,2,Rongxin WANG2,Zhicheng SU1,Shijie XU1,*(),Zheng XING2,Shulong LU2,Jianrong DONG2,Hui YANG2
1. Department of Physics, HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Hong Kong, China
2. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
 Download: PDF(659 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, influence of temperature and reverse bias on photocurrent spectrum and spectral response of a monolithic GaInP/GaAs double-junction solar cell was investigated in detail. Two sharp spectral response offsets, corresponding to the bandedge photo absorption of the bottom GaAs and the top GaInP subcells, respectively, show the starting response points of individual subcells. More interestingly, the cell photocurrent was found to enhance significantly with increasing the temperature. In addition, the cell photocurrent also increases obviously as the reverse bias voltage increases. The integrated photocurrent intensity of the top GaInP subcell was particularly addressed. A theoretical model was proposed to simulate the reverse bias dependence of the integrated photocurrent of the GaInP subcell at different temperatures.

Keywords GaInP alloy      GaAs      solar cell      photocurrent     
Corresponding Author(s): Shijie XU   
Just Accepted Date: 18 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Zhuo DENG,Jiqiang NING,Rongxin WANG, et al. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0599-y
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/306
Fig.1  Photocurrent spectra recorded from Sample 2° at different temperatures without the application of external bias voltage. Several spectral features are indicated by arrows and labels
Fig.2  ?Temperature dependence (solid squares) of the photocurrent sharp peak due to the bandedge absorption of GaInP in the top subcell. Solid line is the fitting curve with the Varshni empirical formula
Fig.3  Photocurrent spectra measured from Sample 2° at 10, 80, 160 and 300 K for different reverse bias voltages. The reverse bias voltage increases from 0 to -4 V. Several spectral features are marked by arrows and labels in the bottom figure
Fig.4  ?Dependences of the integrated intensity of photocurrent with energy≥EGaInP on the reverse bias voltage at different temperatures excerpted from Fig. 3. Theoretical fitting curves with Eq. (9) are also shown by the solid curves at each temperature
1 Cotal H, Fetzer C, Boisvert J, Kinsey G, King R, Hebert P, Yoon H, Karam N. III–V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2009, 2(2): 174–192
https://doi.org/10.1039/B809257E
2 Leite M S, Woo R L, Munday J N, Hong W D, Mesropian S, Law D C, Atwater H A. Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency>50%. Applied Physics Letters, 2013, 102(3): 033901
https://doi.org/10.1063/1.4758300
3 Fraunhofer I S E. World record solar cell with 44.7% efficiency. 2013, November 11.
4 Takamoto T, Ikeda E, Kurita H, Ohmori M. Over 30% efficient InGaP/GaAs tandem solar cells. Applied Physics Letters, 1997, 70(3): 381
https://doi.org/10.1063/1.118419
5 Yang M J, Yamaguchi M, Takamoto T, Ikeda E, Kurita E H, Ohmori M. Photoluminescence analysis of InGaP top cells for high-efficiency multi-junction solar cells. Solar Energy Materials and Solar Cells, 1997, 45(4): 331–339
https://doi.org/10.1016/S0927-0248(96)00079-7
6 King R R, Fetzer C M, Colter P C, Edmondson K M, Ermer J H, Cotal H L, Hojun Y, Stavrides A P, Kinsey G, Krut D D, Karam N H. High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures. In: Proceedings of Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE. 2002, 776–781
7 Xiong K L, Lu S L, Dong J R, Zhou T F, Jiang D S, Wang R X, Yang H. Light-splitting photovoltaic system utilizing two dual-junction solar cells. Solar Energy, 2010, 84(12): 1975–1978
https://doi.org/10.1016/j.solener.2010.10.011
8 Deng Z, Wang R X, Ning J Q, Zheng C C, Bao W, Xu S J, Zhang X D, Lu S L, Dong J R, Zhang B S, Yang H. Radiative recombination of carriers in the GaxIn1-xP/GaAs double-junction tandem solar cells. Solar Energy Materials and Solar Cells, 2013, 111: 102–106
https://doi.org/10.1016/j.solmat.2012.12.025
9 Deng Z, Wang R X, Ning J Q, Zheng C C, Xu S J, Xing Z, Lu S L, Dong J R, Zhang B S, Yang H. Super transverse diffusion of minority carriers in GaxIn1-xP/GaAs double-junction tandem solar cells. Solar Energy, 2014, 110: 214–220
https://doi.org/10.1016/j.solener.2014.09.017
10 Meusel M, Baur C, Le’tay G, Bett A W, Warta W, Fernandez E. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation. Progress in Photovoltaics: Research and Applications, 2003, 11(8): 499–514
https://doi.org/10.1002/pip.514
11 King D L, Hansen B R, Moore J M, Aiken D J. New methods for measuring performance of monolithic multi-junction solar cells. In: Proceedings of Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE. 2000, 1197–1201
12 Najda S P, Dawson M D, Duggan G. Bias and temperature-dependent photocurrent spectroscopy of a compressively strained GaInP/AlGaInP single quantum well. Semiconductor Science and Technology, 1995, 10(4): 433–436
https://doi.org/10.1088/0268-1242/10/4/009
13 Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34(1): 149–154
https://doi.org/10.1016/0031-8914(67)90062-6
14 Deng Z, Ning J Q, Su Z C, Xu S J, Xing Z, Wang R X, Lu S L, Dong J R, Zhang B S, Yang H. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP subcells of GaInP/GaAs double-junction tandem solar cells. Applied Materials & Interfaces, 2015, 7(1): 690–695
https://doi.org/10.1021/am506976n
15 Kawasaki K, Tanigawa K, Fujiwara K.Tunneling effects on temperature-dependent photocurrent intensity in InxGa1-x As multiple-quantum-well diodes. In: Proceedings of IEEE Conference on Optoelectronic and Microelectronic Materials and Devices. 2006, 302–304
16 Wang J, Zheng C, Ning J, Zhang L, Li W, Ni Z, Chen Y, Wang J, Xu S. Luminescence signature of free exciton dissociation and liberated electron transfer across the junction of graphene/GaN hybrid structure. Scientific Reports, 2015, 5: 7687
https://doi.org/10.1038/srep07687 pmid: 25567005
17 Streetman B G, Banerjee S K. Solid State Electronic Devices.New Jersey: Prentice Hall, 2009
[1] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[2] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[3] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[4] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[5] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[6] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[7] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[8] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[9] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[10] Tao YUAN, Zhonghuan CAO, Guoli TU. Indium tin oxide-free inverted polymer solar cells with ultrathin metal transparent electrodes[J]. Front. Optoelectron., 2017, 10(4): 402-408.
[11] Yuqin LIAO, Xianyuan JIANG, Wenjia ZHOU, Zhifang SHI, Binghan LI, Qixi MI, Zhijun NING. Hole-transporting layer-free inverted planar mixed lead-tin perovskite-based solar cells[J]. Front. Optoelectron., 2017, 10(2): 103-110.
[12] Dong XU, Sheng YIN, Xiangbin ZENG, Song YANG, Xixing WEN. Structural, optical and electrical properties of ZnO: B thin films with different thickness for bifacial a-Si:H/c-Si heterojunction solar cells[J]. Front. Optoelectron., 2017, 10(1): 31-37.
[13] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[14] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[15] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed