Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (3) : 300-319    https://doi.org/10.1007/s12200-014-0435-1
REVIEW ARTICLE
Silicon hybrid nanoplasmonics for ultra-dense photonic integration
Xiaowei GUAN,Hao WU,Daoxin DAI()
State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
 Download: PDF(3322 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently hybrid plasmonic waveguides have been becoming very attractive as a promising candidate to realize next-generation ultra-dense photonic integrated circuits because of the ability to achieve nano-scale confinement of light and relatively long propagation distance. Furthermore, hybrid plasmonic waveguides also offer a platform to merge photonics and electronics so that one can realize ultra-small optoelectronic integrated circuits (OEICs) for high-speed signal generation, processing as well as detection. In this paper, we gave a review for the progresses on various hybrid plasmonic waveguides as well as ultrasmall functionality devices developed recently.

Keywords plasmonics      hybrid      silicon      nanowire      integration     
Corresponding Author(s): Daoxin DAI   
Online First Date: 31 July 2014    Issue Date: 09 September 2014
 Cite this article:   
Xiaowei GUAN,Hao WU,Daoxin DAI. Silicon hybrid nanoplasmonics for ultra-dense photonic integration[J]. Front. Optoelectron., 2014, 7(3): 300-319.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0435-1
https://academic.hep.com.cn/foe/EN/Y2014/V7/I3/300
Fig.1  (a) Configuration for a hybrid slab waveguide; the electric field Ey in a hybrid slab waveguide when (b) tL = 500 nm; (c) tL = 150 nm; (d) tL = 50 nm
Fig.2  (a) Cross section of a hybrid plasmonic waveguide with a metal cap; (b) calculated field distribution for the major component Ey(x,y) of the quasi-TM fundamental mode of the hybrid plasmonic waveguide with wco = 200 nm and hslot = 50 nm. In this figure, the field distributions Ey(0, y) and Ey(x, 0) are also shown [21]
Ref.yearconfigurationtheory/experimentfeatures
[18]2007theorystructure: Si/SiO2/Agλ: 500~1200 nmFWHM: 400 nmLprop: 13.5 μm
[21]2009theorystructure: Ag/SiO2/ Siλ: 1550 nmWWG: 50 nmLprop: ~90 μm
[45]2010experimenstructure: Au-SiO2-Siλ: 1550 nmWWG: 250 nmLprop: 40 μm
[49]2010theorystructure: Ag-SiO2-Si-SiO2-Agλ: 1550 nmSi-core width: 50 nmAeff: 0.007 μm2Lprop: ~20 μm
[47]2011theorystructure: Ag-SiO2-Siλ: 1550 nmWWG: 70 nmloss: ~0.1 dB/μmAeff: 0.066 μm2
[51]2011theorystructure: Al-SiO2-Si-SiO2-Alλ: 1550 nmSi-core width: 300 nmLprop: ~31 μm
[53]2011experimenstructure: Al-SiO2-Si-SiO2-Alλ: 1550 nmSi-core width: 43-136 nmloss: 1.07-1.63 dB/μm
[54]2011experimentstructure: Cu-SiO2-Si-SiO2-Cuλ: 1550 nmSi-core width: 21-134 nmloss: 0.37-0.63 dB/μm
[55]2011experimentstructure: Ag-SiO2-Si-SiO2- Agλ: 1550 nmSi-core width: 300 nm;propagation loss: 1.6 dB/mm
[65]2012experimentstructure: Cu-SiO2-Siλ: 1550 nmwaveguide width: 160 nmloss: 0.122 dB/μm
[52]2012experimentstructure: Cu-SiOx-Si-SiOx-Cuλ: 1554 nm/1318 nmSi-core width: 160-220 nmloss: 0.2-0.3 dB/μm
[57]2013experimentstructure: Ag-air-Siλ: 1550 nmSi width: 400 nmloss: 0.14 dB/μm
[56]2013theorystructure: Si-Si:nc-Ag-Si-nc-Siλ: 1550 nmslot size: 150 nm × 200 nmloss: 3 × 10-4 dB/μm
[38]2013theoryStructure: Ag-Air-Siλ: 1550 nmAeff: 2.8 × 10-6 λ2Lprop: 2.6 μm
Tab.1  Reported silicon hybrid nanoplasmonic waveguides with rectangular structures
Fig.17  SEM picture for a sputtering silver surface
Fig.18  SEM picture for a silicon hybrid nanoplasmonic waveguide with dropped metal [109]
Fig.19  (a) Cross section of a hybrid plasmonic waveguide with an inverted metal rib; (b) field distribution in a hybrid plasmonic waveguide with the following parameters: nH = 3.455, nL = 1.445, nmetal = 0.1453+ 11.3587i, H = 300 nm, hrib = 250 nm, hslot = 10 nm, hm = 100 nm, and wco = 200 nm [47]
Fig.20  (a) Cross section of a hybrid plasmonic waveguide with double low-index slots; (b) field distribution for the major component Ex(x, y) of the quasi-TE fundamental mode when wco = 50 nm and wSiO2 = 10 nm. Here the field distributions Ex(x0, y) and Ex(x, y0) are also shown. Here x0 = wSi/2+ wSiO2/2 and y0 = hSi/2 [49]
Fig.21  Electrical field distribution Ey(x, y) for the cases of (a) R = 2 μm, (b) R = 1 μm, (c) R = 800 nm, (d) R = 500 nm. The other parameters are: hslot = 20 nm, wco = 400 nm [71]
Fig.22  Calculated bending loss for bent hybrid plasmonic waveguides (at 1550 nm). (a) hslot = 10 nm; (b) hslot = 20 nm; (c) hslot = 50 nm [71]
Fig.23  (a) 1 × 2 3 dB MMI power splitter; (b) 1 × 2 3 dB Y-branch power splitter; (c) 1 × 2 3 dB DC
Ref.yearstructureRextinctionratioQFSR
[71]2011800 nm30 dB220148 nm
[77]2011890 nm-648140 nm
[75]2011910 nm28 dB638143 nm
[65]20121.09 μm13.7 dB63106 nm
[76]2013522 nm12.4 dB110210 nm
Tab.2  Silicon hybrid nanoplasmonic waveguide resonators
Fig.29  Cross section of a silicon hybrid nanoplasmonic waveguide and the filed distributions for the TE0 and TM0 modes
Fig.30  Configuration (a) and light propagation (b) of a PBS with a MMI coupler on Si HPW platform [92]
Ref.gain mediumgainwavelength
[122]IR140 dye molecules (Sigma Aldrich)360 cm-1882 nm
[123]PMMA with Rhodamine 6G dye (R6G)420 cm-1594 nm
[124]Er-doped phosphate glass1 cm-11532 nm
[125]Er-doped Al2O30.3 cm-11530 nm
[126]sulfide (PbS) QDs150 cm-11525 nm
[127]GaInAsP1200 cm-11500 nm
[128]PbS semiconductor quantum dots1700 cm-11250 nm
[129]PMMA with PbS QDs17 cm-11160 nm
[130]dye solution-633 nm
[131]PbS QDs200 cm-1860 nm
[132]silicon nanocrystals100 cm-1800 nm
[133]MDMO-PPV:PSF90 cm-1600 nm
Tab.3  Gain reported in literatures [47]
1 Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi M, Shoji T, Tamechika E, Itabashi S, Morita H. Microphotonics devices based on silicon microfabrication technology. IEEE Journal on Selected Topics in Quantum Electronics, 2005, 11(1): 232–240
doi: 10.1109/JSTQE.2004.841479
2 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
doi: 10.1364/OL.29.001209 pmid: 15209249
3 Thylén L, Qiu M, Anand S. Photonic crystals—a step towards integrated circuits for photonics. ChemPhysChem, 2004, 5(9): 1268–1283
doi: 10.1002/cphc.200301075 pmid: 15499844
4 Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates. Applied Physics Letters, 2004, 84(6): 852–854
doi: 10.1063/1.1645990
5 Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Optics Express, 2005, 13(3): 977–984
doi: 10.1364/OPEX.13.000977 pmid: 19494961
6 Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2004, 21(12): 2442–2446
doi: 10.1364/JOSAA.21.002442 pmid: 15603083
7 Wang B, Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Optics Letters, 2004, 29(17): 1992–1994
doi: 10.1364/OL.29.001992 pmid: 15455757
8 Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160
doi: 10.1063/1.1557323
9 Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Optics Express, 2005, 13(1): 256–266
doi: 10.1364/OPEX.13.000256 pmid: 19488350
10 Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101-1–211101-3
doi: 10.1063/1.1935034
11 Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071
doi: 10.1364/OL.29.001069 pmid: 15181988
12 Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511
doi: 10.1038/nature04594 pmid: 16554814
13 Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188
doi: 10.1364/OL.30.001186 pmid: 15943304
14 Xiao S S, Liu L, Qiu M. Resonator channel drop filters in a plasmon-polaritons metal. Optics Express, 2006, 14(7): 2932–2937
doi: 10.1364/OE.14.002932 pmid: 19516431
15 Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
doi: 10.1364/OPEX.13.006645 pmid: 19498679
16 Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102-1–131102-3
doi: 10.1063/1.2056594
17 Zia R, Schuller A J, Chandran A, Brongersma L M. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7–8): 21–27
18 Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference. Baltimore, 2007,JThD112
19 Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
doi: 10.1038/nphoton.2008.131
20 Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
doi: 10.1109/LPT.2008.2011995
21 Dai D X, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
doi: 10.1364/OE.17.016646 pmid: 19770880
22 Dai D X, Yang L. Proposal of a thermally-tunable silicon-on-insulator microring resonator filter. In: Proceedings of Asia Optical Fiber Communication & Optoelectrnic Exposition & Conference. Shanghai, 2007, 582–583
23 Feng N N, Brongersma M L, Negro L D. Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. IEEE Journal of Quantum Electronics, 2007, 43(6): 479–485
doi: 10.1109/JQE.2007.897913
24 Wang Z, Dai D X, Shi Y, Somesfalean G, Holmstrom P, Thylen L, He S, Wosinski L. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference. Los Angeles, 2011
25 Zhou G, Wang T, Pan C, Hui X, Liu F F, Su Y K. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. In: Group Four Photonics. Beijing, 2010
26 Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544
doi: 10.1364/OE.20.020535 pmid: 23037100
27 Tian J, Ma Z, Li Q, Song Y, Liu Z, Yang Q, Zha C L, Akerman J, Tong L M, Qiu M. Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97(23): 231121-1–231121-3
doi: 10.1063/1.3524515
28 Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9
doi: 10.1088/2040-8978/15/3/035503
29 Bian Y S, Gong Q H. Multilayer metal-dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm. Journal of Optics, 2014, 16(1): 015001-1–015001-12
doi: 10.1088/2040-8978/16/1/015001
30 Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L, Gao D S. A silicon-based 3-D hybrid long-rang plasmonic waveguide for nanophotonic integrating. Journal of Lightwave Technology, 2012, 30(1): 163–168
doi: 10.1109/JLT.2011.2179008
31 Noghani M T, Samiei M H V. Analysis and optimum design of hybrid plasmonic slab waveguides. Plasmonics, 2013, 8(2): 1155–1168
doi: 10.1007/s11468-013-9526-x
32 Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove. Journal of Optics, 2013, 15(5): 055011-1–055011-6
doi: 10.1088/2040-8978/15/5/055011
33 Bian Y S, Gong Q. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement. Applied Optics, 2013, 52(23): 5733–5741
doi: 10.1364/AO.52.005733 pmid: 23938426
34 Bian Y S, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920
doi: 10.1364/OE.21.023907 pmid: 24104301
35 Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 μm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036
doi: 10.1109/TNANO.2013.2263987
36 Kou Y, Ye F W, Chen X F. Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Optics Express, 2011, 19(12): 11746–11752
doi: 10.1364/OE.19.011746 pmid: 21716406
37 Hao R, Li E P, Wei X C. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37(14): 2934–2936
doi: 10.1364/OL.37.002934 pmid: 22825183
38 Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439
doi: 10.1364/OE.21.001430 pmid: 23389124
39 Lu Q, Chen D, Wu G. Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire. Optics Communications, 2013, 289: 64–68
doi: 10.1016/j.optcom.2012.09.077
40 Lou F, Wang Z, Dai D, Thylen L, Wosinski L. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Applied Physics Letters, 2012, 100(24): 241105-1–241105-4
doi: 10.1063/1.4729018
41 Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
doi: 10.1364/OE.18.012971 pmid: 20588426
42 Horvath C, Bachman D, Wu M, Perron D, Van V. Polymer hybrid plasmonic waveguides and microring resonators. IEEE Photonics Technology Letters, 2011, 23(17): 1267–1269
doi: 10.1109/LPT.2011.2159784
43 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
doi: 10.1038/nature08364 pmid: 19718019
44 Su Y, Zheng Z, Bian Y S, Liu Y, Liu J S, Zhu J S, Zhou T. Low-loss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement. Micro & Nano Letters, 2011, 6(8): 643–645
doi: 10.1049/mnl.2011.0298
45 Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Optics Express, 2010, 18(11): 11728–11736
doi: 10.1364/OE.18.011728 pmid: 20589033
46 Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Nanoscale light guiding in a silicon-based hybrid plasmonic waveguide that incorporates an inverse metal ridge. Physica Status Solidi A, 2013, 210(7): 1424–1428
doi: 10.1002/pssa.201228682
47 Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
doi: 10.1364/OE.19.012925 pmid: 21747445
48 Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3
doi: 10.1063/1.3496463
49 Dai D X, He S L. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
doi: 10.1364/OE.18.017958 pmid: 20721182
50 Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
doi: 10.1364/OE.19.008379 pmid: 21643089
51 Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483
doi: 10.1109/LPT.2011.2163500
52 Kwon M S, Shin J S, Shin S Y, Lee W G. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal. Optics Express, 2012, 20(20): 21875–21887
doi: 10.1364/OE.20.021875 pmid: 23037337
53 Zhu S, Liow T Y, Lo G Q, Kwong D L. Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Applied Physics Letters, 2011, 98(2): 021107-1–021107-3
doi: 10.1063/1.3537964
54 Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902
doi: 10.1364/OE.19.008888 pmid: 21643142
55 Zuo X, Sun Z. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. Optics Letters, 2011, 36(15): 2946–2948
doi: 10.1364/OL.36.002946 pmid: 21808367
56 Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311-1–4800311-11
doi: 10.1109/JPHOT.2013.2256887
57 Li H, Noh J W, Chen Y, Li M. Enhanced optical forces in integrated hybrid plasmonic waveguides. Optics Express, 2013, 21(10): 11839–11851
doi: 10.1364/OE.21.011839 pmid: 23736405
58 Xiao J, Liu J, Zheng Z, Bian Y, Wang G, Li S. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Optics Communications, 2012, 285(17): 3604–3607
doi: 10.1016/j.optcom.2012.04.035
59 Guan X, Chen P, Wang X, Wosinski L, Shi Y, Dai D. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides. In: Proceedings of Asia Communications and Photonics Conference. Guangzhou, 2012
60 Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Optics Communications, 2011, 284(1): 480–484
doi: 10.1016/j.optcom.2010.08.054
61 Alam M Z, Caspers J N, Aitchison J S, Mojahedi M. Compact low loss and broadband hybrid plasmonic directional coupler. Optics Express, 2013, 21(13): 16029–16034
doi: 10.1364/OE.21.016029 pmid: 23842389
62 Noghani M T, Samiei M H V. Ultrashort hybrid metal-insulator plasmonic directional coupler. Applied Optics, 2013, 52(31): 7498–7503
doi: 10.1364/AO.52.007498 pmid: 24216649
63 Li Q, Song Y, Zhou G, Su Y K, Qiu M. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Optics Letters, 2010, 35(19): 3153–3155
doi: 10.1364/OL.35.003153 pmid: 20890317
64 Zhu S, Lo G Q, Kwong D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Optics Express, 2012, 20(6): 5867–5881
doi: 10.1364/OE.20.005867 pmid: 22418464
65 Zhu S, Lo G Q, Kwong D L. Experiment demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform. IEEE Photonics Technology Letters, 2012, 24(14): 1224–1226
doi: 10.1109/LPT.2012.2199979
66 Chu H S, Bai P, Li E P, Hoefer W R J. Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics, 2011, 6(3): 591–597
doi: 10.1007/s11468-011-9239-y
67 Song Y, Wang J, Yan M, Qiu M. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. Journal of Optics, 2011, 13(7): 075002-1–075002-8
doi: 10.1088/2040-8978/13/7/075002
68 Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmstr?m P, Wosinski L, Thylen L, Dai D. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides. Optics Express, 2011, 19(2): 838–847
doi: 10.1364/OE.19.000838 pmid: 21263623
69 Xiao J, Liu J, Zheng Z, Bian Y, Wang G. Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide. Journal of Optics, 2011, 13(10): 105001
doi: 10.1088/2040-8978/13/10/105001
70 Shin J S, Kwon M S, Lee C H, Shin S Y. Investigation and improvement of 90° direct bends of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics Journal, 2013, 5(5): 6601909-1–6601909-5
doi: 10.1109/JPHOT.2013.2281983
71 Dai D, Shi Y, He S, Wosinski L, Thylen L. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Optics Express, 2011, 19(24): 23671–23682
doi: 10.1364/OE.19.023671 pmid: 22109393
72 Chu H S, Akimov Y, Bai P, Li E P. Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Optics Letters, 2012, 37(21): 4564–4566
doi: 10.1364/OL.37.004564 pmid: 23114364
73 Zhu S, Lo G Q, Kwong D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Optics Express, 2012, 20(14): 15232–15246
doi: 10.1364/OE.20.015232 pmid: 22772221
74 Zhu S, Lo G, Kwong D L. Towards athermal nanoplasmonic resonators based on Cu-TiO2-Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Anaheim, 2013
75 Zhu S, Lo G Q, Kwong D L. Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius. IEEE Photonics Technology Letters, 2011, 23(24): 1896–1898
doi: 10.1109/LPT.2011.2171934
76 Lou F, Thylen L, Wosinski L. Hybrid plasmonic microdisk resonators for optical interconnect applications. In: Integrated Optics: Physics and Simulations. Prague: Society of Photo-Optical Instrumentation Engineers, 2013
77 Song Y, Wang J, Yan M, Qiu M. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. Journal of Optics, 2011, 13(7): 075001-1–075001-5
doi: 10.1088/2040-8978/13/7/075001
78 Xu P, Huang Q, Shi Y. Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities. Optics Communications, 2013, 289: 81–84
doi: 10.1016/j.optcom.2012.10.002
79 Yang X, Ishikawa A, Yin X, Zhang X. Hybrid photonic-plasmonic crystal nanocavities. ACS Nano, 2011, 5(4): 2831–2838
doi: 10.1021/nn1033482 pmid: 21384850
80 Yu P, Qi B, Xu C, Hu T, Jiang X Q, Wang M H, Yang J Y. An improved surface-plasmonic nanobeam cavity for higher Q and smaller V. Chinese Science Bulletin, 2012, 57(25): 3371–3374
doi: 10.1007/s11434-012-5350-5
81 Alam M, Aitchsion J S, Mojahedi M. Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics, 2011, 50(15): 2294–2298
doi: 10.1364/AO.50.002294 pmid: 21614124
82 Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating. In: Proceedings of Asia Communications and Photonics Conference. Beijing, 2013, ATh4A
83 Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics West. San Francisco, 2014, 8988
84 Alam M Z, Aitchison J S, Mojahedi M. Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 2012, 37(1): 55–57
doi: 10.1364/OL.37.000055 pmid: 22212789
85 Huang Y, Zhu S, Zhang H, Liow T Y, Lo G Q. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Optics Express, 2013, 21(10): 12790–12796
doi: 10.1364/OE.21.012790 pmid: 23736497
86 Sun X, Alam M Z, Wagner S J, Aitchison J S, Mojahedi M. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 2012, 37(23): 4814–4816
doi: 10.1364/OL.37.004814 pmid: 23202055
87 Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355
doi: 10.1364/OE.20.025345 pmid: 23187351
88 Gao L F, Hu F F, Wang X J, Tang L X, Zhou Z P. Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling. Applied Physics. B, Lasers and Optics, 2013, 113(2): 199–203
doi: 10.1007/s00340-013-5457-7
89 Guan X W, Wu H, Shi Y C, Wosinski L, Dai D X. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008
doi: 10.1364/OL.38.003005 pmid: 24104633
90 Lou F, Dai D X, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374
doi: 10.1364/OL.37.003372 pmid: 23381261
91 Sun B, Chen M Y, Zhang Y K, Zhou J. An ultracompact hybrid plasmonic waveguide polarization beam splitter. Applied Physics B, Lasers and Optics, 2013, 113(2): 179–183
doi: 10.1007/s00340-013-5453-y
92 Guan X W, Wu H, Shi Y C, Dai D X. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262
doi: 10.1364/OL.39.000259 pmid: 24562121
93 Caspers J N, Alam M Z, Mojahedi M. Compact hybrid plasmonic polarization rotator. Optics Letters, 2012, 37(22): 4615–4617
doi: 10.1364/OL.37.004615 pmid: 23164856
94 Caspers J N, Aitchison J S, Mojahedi M. Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Optics Letters, 2013, 38(20): 4054–4057
doi: 10.1364/OL.38.004054 pmid: 24321921
95 Gao L, Huo Y, Harris J S, Zhou Z. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technology Letters, 2013, 25(21): 2081–2084
doi: 10.1109/LPT.2013.2281425
96 Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179
doi: 10.1364/OE.18.013173 pmid: 20588445
97 Zhu S, Lo G, Kwong D. Analysis of ultracompact silicon electro-optic modulator based on Cu-insulator-Si hybrid plasmonic donut resonator. In: Proceedings of Photonics Global Conference. Singapore, 2012
doi: 10.1109/PGC.2012.6457952
98 Ooi K J A, Bai P, Chu H, Ang L K. Vandium dioxide active plasmonics. In: Proceedings of Photonics Global Conference. Singapore, 2012
doi: 10.1109/PGC.2012.6457923
99 Sun X M, Zhou L J, Li X W, Hong Z H, Liu S, Chen J P. Miniature intensity modulator based on a silicon-polymer hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics and Optoelectronics Meetings. Shanghai, 2011, 8333
100 Lou F, Dai D X, Thylen L, Wosinski L. Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators. Optics Express, 2013, 21(17): 20041–20051
doi: 10.1364/OE.21.020041 pmid: 24105551
101 Dalton L R, Robinson B, Jen A, Ried P, Eichinger B, Sullivan P, Akelaitis A, Bale D, Haller M, Luo J, Liu S, Liao Y, Firestone K, Bhatambrekar N, Bhattacharjee S, Sinness J, Hammond S, Buker N, Snoeberger R, Lingwood M, Rommel H, Amend J, Jang S H, Chen A, Steier W. Electro-optic coefficients of 500 pm/V and beyond for organic materials. In: Proceeding of SPIE 5935, Linear and Nonlinear Optics of Organic Materials V. 2005
doi: 10.1117/12.617343
102 Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 50(20): 3428–3434
doi: 10.1364/AO.50.003428 pmid: 21743549
103 Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A
104 Bahrami F, Alam M Z, Aitchison J S, Mojahedi M. Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics, 2013, 8(2): 465–473
doi: 10.1007/s11468-012-9411-z
105 Kwon M S. Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide. Plasmonics, 2010, 5(4): 347–354
doi: 10.1007/s11468-010-9149-4
106 Zhou L J, Sun X M, Li X W, Chen J P. Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors (Basel, Switzerland), 2011, 11(7): 6856–6867
doi: 10.3390/s110706856 pmid: 22163989
107 Zhang L, Shu Y. Modified hybrid plasmonic waveguides as tunable optical tweezers. Chinese Physics Letters, 2013, 30(3): 034208-1–034208-4
doi: 10.1088/0256-307X/30/3/034208
108 Yang X, Liu Y, Oulton R F, Yin X, Zhang X. Optical forces in hybrid plasmonic waveguides. Nano Letters, 2011, 11(2): 321–328
doi: 10.1021/nl103070n pmid: 21229998
109 Guan X, Wu H, Dai D. Silicon hybrid surface plasmonic nano-optics-waveguide and integrated devices. Chinese Journal of Optics and Applied Optics, 2014, 7(2): 181–196
doi: 10.3788/co.20140702.0181
110 Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364
doi: 10.1364/OE.17.020355 pmid: 19997264
111 Dong P, Feng N N, Feng D, Qian W, Liang H, Lee D C, Luff B J, Banwell T, Agarwal A, Toliver P, Menendez R, Woodward T K, Asghari M. GHz-bandwidth optical filters based on high-order silicon ring resonators. Optics Express, 2010, 18(23): 23784–23789
doi: 10.1364/OE.18.023784 pmid: 21164722
112 Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
doi: 10.1038/nature03569 pmid: 15902253
113 Wang J W, Dai D X. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring. Optics Letters, 2010, 35(24): 4229–4231
pmid: 21165146
114 Dekker R, Usechak N, Forst M, Driessen A. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. Journal of Physics D, 2007, 40(14): R249–R271
doi: 10.1088/0022-3727/40/14/R01
115 Dai D X, Liu L, Gao S M, Xu D X, He S L. Polarization management for silicon photonic integrated circuits. Laser Photonics Review, 2013, 7(3): 303–328
doi: 10.1002/lpor.201200023
116 Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Optics Express, 2012, 20(12): 13425–13439
doi: 10.1364/OE.20.013425 pmid: 22714370
117 Wang Z W, Dai D X. Ultrasmall Si-nanowire based polarization rotator. Journal of the Optical Society of America. B, Optical Physics, 2008, 25(5): 747–753
doi: 10.1364/JOSAB.25.000747
118 Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757
doi: 10.1364/OE.17.004752 pmid: 19293905
119 Mote R G, Chu H S, Bai P, Li E P. Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Optics Communications, 2012, 285(18): 3709–3713
doi: 10.1016/j.optcom.2012.04.037
120 Choi S E, Kim J T. Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide. Optics Communications, 2012, 285(18): 3735–3739
doi: 10.1016/j.optcom.2012.05.007
121 Shi P, Zhou G, Chau F S. Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(6): 1426–1431
doi: 10.1364/JOSAB.30.001426
122 De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photonics, 2010, 4(6): 382–387
doi: 10.1038/nphoton.2010.37
123 Noginov M A, Zhu G, Mayy M, Ritzo B A, Noginova N, Podolskiy V A. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806
doi: 10.1103/PhysRevLett.101.226806 pmid: 19113507
124 Ambati M, Nam S H, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Observation of stimulated emission of surface plasmon polaritons. Nano Letters, 2008, 8(11): 3998–4001
doi: 10.1021/nl802603r pmid: 18837543
125 van den Hoven G N, Koper R J I M, Polman A, van Dam C, van Uffelen J W M, Smit M K. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Applied Physics Letters, 1996, 68(14): 1886–1888
doi: 10.1063/1.116283
126 Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Letters, 2009, 9(8): 2935–2939
doi: 10.1021/nl901314u pmid: 19719111
127 Nezhad M, Tetz K, Fainman Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Optics Express, 2004, 12(17): 4072–4079
doi: 10.1364/OPEX.12.004072 pmid: 19483948
128 Plum E, Fedotov V A, Kuo P, Tsai D P, Zheludev N I. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Optics Express, 2009, 17(10): 8548–8551
doi: 10.1364/OE.17.008548 pmid: 19434188
129 Bolger P M, Dickson W, Krasavin A V, Liebscher L, Hickey S G, Skryabin D V, Zayats A V. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Optics Letters, 2010, 35(8): 1197–1199
doi: 10.1364/OL.35.001197 pmid: 20410965
130 Seidel J, Grafstr?m S, Eng L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Physical Review Letters, 2005, 94(17): 177401
doi: 10.1103/PhysRevLett.94.177401 pmid: 15904333
131 Radko I, Nielsen M G, Albrektsen O, Bozhevolnyi S I. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths. Optics Express, 2010, 18(18): 18633–18641
doi: 10.1364/OE.18.018633 pmid: 20940755
132 Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444
doi: 10.1038/35044012 pmid: 11100719
133 Gather M C, Meerholz K, Danz N, Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photonics, 2010, 4(7): 457–461
doi: 10.1038/nphoton.2010.121
134 Rao R J, Tang T T. Study of an active hybrid gap surface plasmon polariton waveguide with nanoscale confinement size and low compensation gain. Journal of Physics. D, Applied Physics, 2012, 45(24): 245101
doi: 10.1088/0022-3727/45/24/245101
135 Zhang J, Cai L, Bai W L, Xu Y, Song G F. Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Optics Letters, 2011, 36(12): 2312–2314
doi: 10.1364/OL.36.002312 pmid: 21686004
136 Zhu N, Mei T. Study of an SPP mode with gain medium based on a hybrid plasmonic structure. In: Proceedings of Asia Communications and Photonics Conference (ACP). Guangzhou, 2012, AF4A.17
137 Gao L F, Tang L X, Hu F F, Guo R M, Wang X J, Zhou Z P. Active metal strip hybrid plasmonic waveguide with low critical material gain. Optics Express, 2012, 20(10): 11487–11495
doi: 10.1364/OE.20.011487 pmid: 22565768
138 Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials, 2011, 10(2): 110–113
doi: 10.1038/nmat2919 pmid: 21170028
139 Zhu S, Lo G Q, Kwong D L. Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator. Optics Express, 2013, 21(10): 12699–12712
doi: 10.1364/OE.21.012699 pmid: 23736489
140 Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A
141 Zhang J, Cassan E, Zhang X. Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth. Optics Letters, 2013, 38(12): 2089–2091
doi: 10.1364/OL.38.002089 pmid: 23938986
142 Aldawsari S, West B R. Hybrid plasmonic waveguides for nonlinear applications. In: Proceedings of Photonics Global Conference. Singapore, 2012
doi: 10.1109/PGC.2012.6458075
143 Pitilakis A, Kriezis E E. Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(7): 1954–1965
doi: 10.1364/JOSAB.30.001954
144 Perron D, Wu M, Horvath C, Bachman D, Van V. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Optics Letters, 2011, 36(14): 2731–2733
doi: 10.1364/OL.36.002731 pmid: 21765524
145 Lu C C, Hu X Y, Yue S, Fu Y L, Yang H, Gong Q H. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics, 2013, 8(2): 749–754
doi: 10.1007/s11468-012-9467-9
146 Li F, Xu M, Hu X F, Wu J Y, Wang T, Su Y K. Monolithic silicon-based 16-QAM modulator using two plasmonic phase shifters. Optics Communications, 2013, 286: 166–170
doi: 10.1016/j.optcom.2012.08.068
147 Luo Y, Chamanzar M, Eftekhar A A, Adibi A. Dual structures for ultra-compact on-chip plasmonic light concentration on silicon platforms. In: Proceedings of IEEE Photonics Conference, Burlingame, 2012, 682–683
148 Zhu N, Mei T. Focusing and demultiplexing of an in-plane hybrid plasmonic mode based on the planar concave grating. Optics Communications, 2013, 298-299: 120–124
149 Ketzaki D A, Tsilipakos O, Yioultsis T V, Kriezis E E. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators. Journal of Applied Physics, 2013, 114(11): 11317-1–11317-8
doi: 10.1063/1.4821796
150 Zhu N, Mei T. Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure. Optics Letters, 2012, 37(10): 1751–1753
doi: 10.1364/OL.37.001751 pmid: 22627559
151 Akimov Y A, Chu H S. Plasmon-plasmon interaction: controlling light at nanoscale. Nanotechnology, 2012, 23(44): 444004
doi: 10.1088/0957-4484/23/44/444004 pmid: 23080049
152 Hu Y W, Li B B, Liu Y X, Xiao Y F, Gong Q. Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping. Optics Communications, 2013, 291: 380–385
153 Lanzillotti-Kimura N D, Zentgraf T, Zhang X. Control of plasmon dynamics in coupled plasmonic hybrid mode microcavities. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045309-1–045309-6
doi: 10.1103/PhysRevB.86.045309
154 Zhang T, Chen L, Li X. Reduction of propagation loss by introducing hybrid plasmonic model in graded-grating based “trapped rainbow” system. Optics Communications, 2013, 301-302: 116–120
doi: 10.1016/j.optcom.2013.04.003
155 Zhu S, Lo G Q, Kwong D L. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide. Optics Express, 2011, 19(17): 15843–15854
doi: 10.1364/OE.19.015843 pmid: 21934947
156 He X Y, Wang Q J, Yu S F. Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics, 2012, 7(3): 571–577
doi: 10.1007/s11468-012-9344-6
[1] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[2] Love KUMAR, Amarpal SINGH, Vishal SHARMA. Analysis on multiple optical line terminal passive optical network based open access network[J]. Front. Optoelectron., 2019, 12(2): 208-214.
[3] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[4] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[5] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[6] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[7] Yonglun TANG, Haibo REN, Jiarui HUANG. Synthesis of porous TiO2 nanowires and their photocatalytic properties[J]. Front. Optoelectron., 2017, 10(4): 395-401.
[8] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[9] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[10] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[11] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[12] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[13] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[14] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[15] Ya’nan WANG,Yi LUO,Changzheng SUN,Bing XIONG,Jian WANG,Zhibiao HAO,Yanjun HAN,Lai WANG,Hongtao LI. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide[J]. Front. Optoelectron., 2016, 9(2): 323-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed