Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (3) : 243-253    https://doi.org/10.1007/s12200-011-0144-y
REVIEW ARTICLE
Silicon slow light photonic crystals structures: present achievements and future trends
Eric CASSAN(), Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN
Institut d'Electronique Fondamentale, Université Paris-Sud, CNRS UMR 8622, Bat. 220, 91405 Orsay Cedex, France
 Download: PDF(732 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Slow light in planar photonic structures has attracted for some years an increasing interest due to amazing physical effects it allows or reinforces and to the degrees of freedom it raises for designing new optical functions. Controlling light group velocity is achieved through the use of periodical optical media obtained by nano-structuration of semiconductor wafers at the scale of light wavelength: the so-called photonic crystals. This article reviews present achievements realized in the field of slow light photonic bandgap structures, including the physical principles of slow light to the description of the most advanced integrated optical devices relying on it. Challenges and current hot topics related to slow light are discussed to highlight the balance between the advantages and drawbacks of using slow waves in integrated photonic structures. Then, future trends are described, which is focused on the use of slow wave slot waveguides for non-linear optics and bio-photonic applications.

Keywords slow light      photonic crystals      silicon photonics      integrated optical devices     
Corresponding Author(s): CASSAN Eric,Email:eric.cassan@u-psud.fr   
Issue Date: 05 September 2011
 Cite this article:   
Ran HAO,Charles CAER,Laurent VIVIEN, et al. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0144-y
https://academic.hep.com.cn/foe/EN/Y2011/V4/I3/243
Fig.1  Optical guided modes in a silicon on insulator planar photonic crystal. (a) Schematic picture of SOI 2D planar PhC; (b) typical dispersion diagram calculated with 3D plane wave expansion method, grey region corresponds to radiation modes, i.e., electromagnetic modes that are not strictly confined within the optical slab; (c) schematic picture of a 1 PhC planar waveguide; (d) associated dispersion diagram with projection of light wavevector in the direction of the linear defect. Normalized quantities are used for both wavelength and wavevector []
Fig.2  Dispersion engineering of 1 modified PhC waveguides. (a) Dispersion diagram associated with waveguide geometry depicted in the inset of the figure right part; (b) group index related with so-called waveguide B, characterized by and shifts with respect to light propagation direction
Fig.3  Schematic picture of different origins of light leakage and losses in slow light photonic crystal waveguides
Fig.4  Design of input/output tapers for light injection/collection into/from strip waveguides to slow light PhC waveguide mode. (a) Dispersion relationship of the considered linear defect mode; (b) light group velocity of the even mode depicted in red a part curve of (a); (c) schematic picture of the gradual taper introduced at both interfaces between strip and PhC waveguides
Fig.5  Frequency-domain measurement of the group index of a PhC waveguide in a Mach-Zehnder configuration. PhC waveguide is inserted in one of the two arms of a Mach-Zehnder interferometer. Experimental transmission spectrum has typical cosines shape, but narrowing of the min-to-max or max-to-min transmission near band edge is the signature of increasing values
Fig.6  Proposal for slot PhC waveguides relying on a Bragg-like corrugation of the slit and slow light propagation. (a) Schematic picture of the proposed waveguide geometry; (b) dispersion diagram for a silicon on insulator slab with height of 260 nm, with silicon and silica refractive indices of 3.48 and 1.44, respectively, and =0.25, d=0.4, d=0.5 (group index is plotted into the inset); (c) component within space
1 Pavesi L, Guillot G. Optical Interconnects: The Silicon Approach. Berlin: Springer, 2006
2 Soref R. Silicon photonics: a review of recent literature. Chemistry and Materials Science , 2010, 2(1): 1–6
doi: 10.1007/s12633-010-9034-y
3 Jones R, Liao L, Liu A S, Salib M, Rubin D, Coehn O, Samara-Rubio D, Paniccia M. Optical characterization of 1-GHz silicon based optical modulator. Proceedings of SPIE , 2004, 5451: 8–15
doi: 10.1117/12.565628
4 Liu A S, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature , 2004, 427(6975): 615–618
doi: 10.1038/nature02310
5 Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax M, Maine S, Laval S, Fédéli J M, Damlencourt J F. Optical modulation by carrier depletion in a silicon PIN diode. Optics Express , 2006, 14(22): 10838–10843
doi: 10.1364/OE.14.010838
6 Marris-Morini D, Vivien L, Fédéli J M, Cassan E, Lyan P, Laval S. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Optics Express , 2008, 16(1): 334–339
doi: 10.1364/OE.16.000334
7 Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N. 40 Gbit/s silicon optical modulator for highspeed applications. Electronics Letters , 2007, 43(22): DOI 10.1049/el:20072253
8 Rong H S, Liu A S, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature , 2005, 433(7023): 292–294
9 Rong H S, Jones R, Liu A S, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature , 2005, 433(7027): 725–728
10 Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L. Broad-band optical parametric gain on a silicon photonic chip. Nature , 2006, 441(7096): 960–963
11 Vallaitis T, Bogatscher S, Alloatti L, Dumon P, Baets R, Scimecca M L, Biaggio I, Diederich F, Koos C, Freude W, Leuthold J. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguides geometries. Optics Express , 2009, 17(20): 17357–17368
doi: 10.1364/OE.17.017357
12 Wang X L, Lin C Y, Chakravarty S, Luo J D, Jen A K Y, Chen R T. Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Optics Letters , 2011, 36(6): 882–884
doi: 10.1364/OL.36.000882
13 Chan S, Horner R, Fauchet P M, Miller B L. Identification of gram negative bacteria using nanoscale silicon microcavities. Journal of the American Chemical Society, 2001, 123(47): 11797–11798
doi: 10.1021/ja016555r
14 Lee M, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express , 2007, 15(8): 4530–4535
15 Krauss T F. Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics , 2007, 40(9): 2666–2670
doi: 10.1088/0022-3727/40/9/S07
16 Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton University Press , 2008
17 Frandsen L H, Lavrinenko A V, Fage-Pedersn J, Borel B. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express , 2006, 14(20): 9444–9450
doi: 10.1364/OE.14.009444
18 Li J, White T P, O’Faolain L, Gomez-Iglesias A, Krauss T F. Systematic design of flat band slow light in photonic crystal waveguides. Optics Express , 2008, 16(9): 6227–6232
doi: 10.1364/OE.16.006227
19 Ebnali-Heidari M, Grillet C, Monat C, Eggleton B J. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express , 2009, 17(3): 1628– 1634
doi: 10.1364/OE.17.001628
20 Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H, Zhou Z, Zhang X. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express , 2010, 18(6): 5942–5950
doi: 10.1364/OE.18.005942
21 Hao R, Cassan E, Le Roux X, Gao D, Do Khanh V, Vivien L, Marris-Morini D, Zhang X. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express , 2010, 18(16): 16309–16319
doi: 10.1364/OE.18.016309
22 Grillot F, Vivien L, Laval S, Pascal D, Cassan E. Size influence on the propagation loss induced by side-wall roughness in ultra-small SOI waveguides. IEEE Photonics Technology Letters , 2004, 16(7): 1661–1663
doi: 10.1109/LPT.2004.828497
23 Grillot F, Vivien L, Laval S, Cassan E. Propagation loss in single-mode ultra small square silicon-on-isulator optical waveguides. Journal of Lightwave Technology , 2006, 24(2): 891–896
doi: 10.1109/JLT.2005.861939
24 Monat C, Corcoran B, Pudo D, Ebnali-Heidari M, Grillet C, Pelusi M D, Moss D J, Eggleton B, White T P, O’Faolain L, Krauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal on Selected Topics in Quantum Electronics , 2010, 16(1): 344–356
doi: 10.1109/JSTQE.2009.2033019
25 O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenovic M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express , 2010, 18(26): 27627–27638
doi: 10.1364/OE.18.027627
26 Askari M, Momeni B, Yegnanarayanan S, Eftekhar A, Adibi A. Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime. Proceedings of SPIE, 2008, 6901: 69011A
doi: 10.1117/12.778576
27 Johnson S G, Bienstman P, Skorobogatiy M A, Ibanescu M, Lidorikis E, Joannopoulos J D. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Physical Review E , 2002, 66(6): 066608
doi: 10.1103/PhysRevE.66.066608
28 de Sterke C M, Walker J, Dossou K B, Botten L C. Efficient slow light coupling into photonic crystals. Optics Express , 2007, 15(17): 10984–10990
doi: 10.1364/OE.15.010984
29 Hugonin J P, Lalanne P, White T W, Krauss T F. Coupling into slow-mode photonic crystal waveguides. Optics Letters , 2007, 32(18): 2638–2640
doi: 10.1364/OL.32.002638
30 de Sterke C M, Dossou K B, White T P, Botten L C, McPhedran R C. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Optics Express , 2009, 17(20): 17338–17343
doi: 10.1364/OE.17.017338
31 Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, van Hulst N F, Krauss T F, Kuipers L. Real-space observation of ultraslow light in photonic crystal waveguides. Physical Review Letters , 2005, 94(7): 073903
doi: 10.1103/PhysRevLett.94.073903
32 Asano T, Kiyota K, Kumamoto D, Song B S, Noda S. Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide. Applied Physics Letters , 2004, 84(23): 4690–4692
doi: 10.1063/1.1760224
33 Jacobsen R, Lavrinenko A, Frandsen L, Peucheret C, Zsigri B, Moulin G, Fage-Pedersen J, Borel P. Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides. Optics Express , 2005, 13(20): 7861–7871
doi: 10.1364/OPEX.13.007861
34 Imhof A, Vos W L, Sprik R, Lagendijk A. Large effects near the band edges of photonic crystals. Physical Review Letters , 1999, 83(15): 2942–2945
doi: 10.1103/PhysRevLett.83.2942
35 Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip photonic crystal waveguides. Nature , 2005, 438(7064): 65–69
doi: 10.1038/nature04210
36 Jiang Y Q, Jiang W, Gu L, Chen X N, Chen R T. 80-micron interaction length photonic crystal waveguide modulator. Applied Physics Letters , 2005, 87(22): 221105
doi: 10.1063/1.2138367
37 Gu L, Jiang W, Chen X, Wang L, Chen R T. High-speed electro-optical silicon modulators based on photonic crystal waveguides. Proceedings of SPIE , 2007, 6477: 64770Z
doi: 10.1117/12.707802
38 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters , 2004, 29(11): 1209–1211
doi: 10.1364/OL.29.001209
39 Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures — Fundamental and Applications , 2008, 6(1): 38–41
doi: 10.1016/j.photonics.2007.08.001
40 Brosi J M, Koos C, Andreani L C, Waldow M, Freude W. High-speed low-voltage electro-optics modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express , 2008, 16(6): 4177–4191
doi: 10.1364/OE.16.004177
41 Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D, Cassan E. Strong light confinement in slot photonic crystal waveguide by Bragg corrugation. IEEE Photonics Technology Letters (in press)
[1] Hongfei WANG, Samit Kumar GUPTA, Biye XIE, Minghui LU. Topological photonic crystals: a review[J]. Front. Optoelectron., 2020, 13(1): 50-72.
[2] Yulan FU, Tianrui ZHAI. Distributed feedback organic lasing in photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 18-34.
[3] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[4] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[5] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
[6] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[7] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[8] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[9] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[10] Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
[11] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[12] Zhiyong LI, Liang ZHOU, Xi XIAO, Tao CHU, Yude YU, Jinzhong YU. Improved extinction ratio of Mach-Zehnder based optical modulators on CMOS platform[J]. Front Optoelec, 2012, 5(1): 90-93.
[13] Guangzhao RAN, Hongqiang LI, Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 2012, 5(1): 3-6.
[14] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[15] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed