Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    0, Vol. Issue () : 3-6    https://doi.org/10.1007/s12200-012-0221-x
REVIEW ARTICLE
On-chip silicon light source: from photonics to plasmonics
Guangzhao RAN(), Hongqiang LI, Chong WANG
School of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China
 Download: PDF(150 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III-V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.

Keywords surface plasmon (SP)      silicon photonics      photonic interconnect      surface plasmon amplification by stimulated emission of radiation (SPASER)     
Corresponding Author(s): RAN Guangzhao,Email:rangz@pku.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Guangzhao RAN,Hongqiang LI,Chong WANG. On-chip silicon light source: from photonics to plasmonics[J]. Front Optoelec, 0, (): 3-6.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0221-x
https://academic.hep.com.cn/foe/EN/Y0/V/I/3
Fig.1  Hybrid integration by bonding III-V semiconductors on silicon. When there is no insertion between them, it is known as direct bonding; for indirect bonding, polymer or metal is frequently chosen as an insertion material. But, polymer bonding results in an electrically insulating layer; and metallic bonding in an optically insulating layer. A transparent and conducting insertion is an interesting alternative in some cases
Fig.2  For light coupling, the metal crossing light coupling area has to be removed, that is, selective area metallic bonding, the expense of which is the alignment-caused low yield. But this bonding method separates III-V process from CMOS process, and so there is no process-compatible problem
Fig.3  (a) Conceptual diagram of an electric excitation SP source, consisting of an active layer and a noble metal layer at least. A pair of index matching layers is added for generating higher fraction of SPs. Coupling between a SP source and a SP waveguide is also depicted, with a very high coupling efficiency. The total thickness between the two metal layers should be sufficiently thin, so it supports SP modes only; (b) operation principal for an SP (laser) diode. Radiation or injection excites a transition into electron-hole (e-h) pairs (vertical blue arrow). The e-h pairs recombine nonradiatively and transfer energy to the plasmon excitation of the metal nano-cavity through resonant coupled transitions (red line). (b) is redrawn after Ref. []. For a SPASER, the active (gain) layer is in population inversion state, and the SP mode gain distributed from the gain media must exceed the SP mode loss, which is usually a very large value.
Fig.4  A typical power dissipation spectrum for the emitter in the middle of the active layer for a metal cladding structure
1 Dionne J A, Sweatlock L A, Sheldon M T, Alivisatos A P, Atwater H A. Silicon-based plasmonics for on-chip photonics. IEEE Journal of Selected Topics in Quantum Electronics , 2010, 16(1): 295-306
doi: 10.1109/JSTQE.2009.2034983
2 Soref R. The past, present, and future of silicon photonics. IEEE Journal on Selected Topics in Quantum Electronics , 2006, 12(6): 1678-1687
doi: 10.1109/JSTQE.2006.883151
3 Intel Labs white paper: The 50G silicon photonics link. 2010, http://newsroom.intel.com/docs/DOC-1131
4 Walters R J, van Loon R V, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface plasmon polaritons. Nature Materials , 2010, 9(1): 21-25
doi: 10.1038/nmat2595 pmid:19966790
5 Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express , 2006, 14(20): 9203-9210
doi: 10.1364/OE.14.009203 pmid:19529301
6 Liang D, Bowers J E. Recent progress in lasers on silicon. Nature Photonics , 2010, 4(7): 511-517
doi: 10.1038/nphoton.2010.167
7 Van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, Van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli J M, Lagahe C, Baets R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express , 2007, 15(11): 6744-6749
doi: 10.1364/OE.15.006744 pmid:19546984
8 Hong T, Ran G Z, Chen T, Pan J Q, Chen W X, Wang Y, Cheng Y B, Liang S, Zhao L J, Yin L Q, Zhang J H, Wang W, Qin G G. A selective-area metal bonding InGaAsP-Si laser. IEEE Photonics Technology Letters , 2010, 22(15): 1141-1143
doi: 10.1109/LPT.2010.2050683
9 Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials , 2010, 3(3): 1782-1802
doi: 10.3390/ma3031782
10 Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physics Review Letters , 2003, 90(2): 027402-027405
11 Zheeludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A. Lasing spaser. Nature Photonics , 2008, 2(6): 351-354
doi: 10.1038/nphoton.2008.82
12 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature , 2009, 461(7264): 629-632
doi: 10.1038/nature08364 pmid:19718019
13 Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature , 2009, 460(7259): 1110-1112
doi: 10.1038/nature08318 pmid:19684572
14 Neutens P, Lagae L, Borghs G, Van Dorpe P. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Letters , 2010, 10(4): 1429-1432
doi: 10.1021/nl1003416 pmid:20334350
15 Koller D M, Honhenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Kernn J R. Organic plasmon-emitting diode. Nature Photonics , 2008, 2(11): 684-687
doi: 10.1038/nphoton.2008.200
16 Ran G Z, Jiang D F, Kan K, Chen H D. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices. Applied Physics Letters , 2010, 97(23): 3304-3306
doi: 10.1063/1.3525161
17 Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, N?tzel R, Ning C Z, Smit M K. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics Express , 2009, 17(13): 11107-11112
doi: 10.1364/OE.17.011107 pmid:19550510
18 Stockman M I. Spasers explained. Nature Photonics , 2008, 2(6): 327-329
doi: 10.1038/nphoton.2008.85
19 Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials , 2010, 9(3): 193-204
doi: 10.1038/nmat2630 pmid:20168343
20 Barnes W L. Electromagnetic crystals for surface plasmonpolaritons and the extraction of light from emissive devices. Journal of Lightwave Technology , 1999, 17(11): 2170-2182
doi: 10.1109/50.803008
21 Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics , 1978, 37: 1-65
22 Winter G, Wedge S, Barnes W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode? New Journal of Physics , 2006, 8(8): 125
doi: 10.1088/1367-2630/8/8/125
[1] Guangze Wu, Yuanjian Wan, Zhao Wang, Xiaolong Hu, Jinwei Zeng, Yu Zhang, Jian Wang. Contactless integrated photonic probes: fundamentals, characteristics, and applications[J]. Front. Optoelectron., 2024, 17(3): 26-.
[2] Huaqing Qiu, Yong Liu, Xiansong Meng, Xiaowei Guan, Yunhong Ding, Hao Hu. Energy-efficient integrated silicon optical phased array[J]. Front. Optoelectron., 2023, 16(3): 23-.
[3] Min Tan, Jiang Xu, Siyang Liu, Junbo Feng, Hua Zhang, Chaonan Yao, Shixi Chen, Hangyu Guo, Gengshi Han, Zhanhao Wen, Bao Chen, Yu He, Xuqiang Zheng, Da Ming, Yaowen Tu, Qiang Fu, Nan Qi, Dan Li, Li Geng, Song Wen, Fenghe Yang, Huimin He, Fengman Liu, Haiyun Xue, Yuhang Wang, Ciyuan Qiu, Guangcan Mi, Yanbo Li, Tianhai Chang, Mingche Lai, Luo Zhang, Qinfen Hao, Mengyuan Qin. Co-packaged optics (CPO): status, challenges, and solutions[J]. Front. Optoelectron., 2023, 16(1): 1-.
[4] Haiyan Luo, Lu Xu, Jie Yan, Qiansheng Wang, Wenwu Wang, Xi Xiao. High-resolution silicon photonic sensor based on a narrowband microwave photonic filter[J]. Front. Optoelectron., 2023, 16(1): 4-.
[5] Xudong Gao, Zhenzhu Xu, Yupeng Zhu, Chengkun Yang, Shoubao Han, Zongming Duan, Fan Zhang, Jianji Dong. Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum[J]. Front. Optoelectron., 2023, 16(1): 6-.
[6] Jeremy C. Adcock, Yunhong Ding. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Front. Optoelectron., 2022, 15(1): 7-.
[7] Zihan Tao, Bo Wang, Bowen Bai, Ruixuan Chen, Haowen Shu, Xuguang Zhang, Xingjun Wang. An ultra-compact polarization-insensitive slot-strip mode converter[J]. Front. Optoelectron., 2022, 15(1): 5-.
[8] Galina Georgieva, Christian Mai, Pascal M. Seiler, Anna Peczek, Lars Zimmermann. Dual-polarization multiplexing amorphous Si:H grating couplers for silicon photonic transmitters in the photonic BiCMOS backend of line[J]. Front. Optoelectron., 2022, 15(1): 13-.
[9] Shengping Liu, Junbo Feng, Ye Tian, Heng Zhao, Li Jin, Boling Ouyang, Jiguang Zhu, Jin Guo. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review[J]. Front. Optoelectron., 2022, 15(1): 9-.
[10] Pascal M. SEILER, Galina GEORGIEVA, Georg WINZER, Anna PECZEK, Karsten VOIGT, Stefan LISCHKE, Adel FATEMI, Lars ZIMMERMANN. Toward coherent O-band data center interconnects[J]. Front. Optoelectron., 2021, 14(4): 414-425.
[11] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[12] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[13] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[14] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[15] Mengying HE,Shasha LIAO,Li LIU,Jianji DONG. Theoretical analysis for optomechanical all-optical transistor[J]. Front. Optoelectron., 2016, 9(3): 406-411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed