|
|
On-chip silicon light source: from photonics to plasmonics |
Guangzhao RAN( ), Hongqiang LI, Chong WANG |
School of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China |
|
|
Abstract Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III-V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.
|
Keywords
surface plasmon (SP)
silicon photonics
photonic interconnect
surface plasmon amplification by stimulated emission of radiation (SPASER)
|
Corresponding Author(s):
RAN Guangzhao,Email:rangz@pku.edu.cn
|
Issue Date: 05 March 2012
|
|
1 |
Dionne J A, Sweatlock L A, Sheldon M T, Alivisatos A P, Atwater H A. Silicon-based plasmonics for on-chip photonics. IEEE Journal of Selected Topics in Quantum Electronics , 2010, 16(1): 295-306 doi: 10.1109/JSTQE.2009.2034983
|
2 |
Soref R. The past, present, and future of silicon photonics. IEEE Journal on Selected Topics in Quantum Electronics , 2006, 12(6): 1678-1687 doi: 10.1109/JSTQE.2006.883151
|
3 |
Intel Labs white paper: The 50G silicon photonics link. 2010, http://newsroom.intel.com/docs/DOC-1131
|
4 |
Walters R J, van Loon R V, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface plasmon polaritons. Nature Materials , 2010, 9(1): 21-25 doi: 10.1038/nmat2595 pmid:19966790
|
5 |
Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express , 2006, 14(20): 9203-9210 doi: 10.1364/OE.14.009203 pmid:19529301
|
6 |
Liang D, Bowers J E. Recent progress in lasers on silicon. Nature Photonics , 2010, 4(7): 511-517 doi: 10.1038/nphoton.2010.167
|
7 |
Van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, Van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli J M, Lagahe C, Baets R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express , 2007, 15(11): 6744-6749 doi: 10.1364/OE.15.006744 pmid:19546984
|
8 |
Hong T, Ran G Z, Chen T, Pan J Q, Chen W X, Wang Y, Cheng Y B, Liang S, Zhao L J, Yin L Q, Zhang J H, Wang W, Qin G G. A selective-area metal bonding InGaAsP-Si laser. IEEE Photonics Technology Letters , 2010, 22(15): 1141-1143 doi: 10.1109/LPT.2010.2050683
|
9 |
Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials , 2010, 3(3): 1782-1802 doi: 10.3390/ma3031782
|
10 |
Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physics Review Letters , 2003, 90(2): 027402-027405
|
11 |
Zheeludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A. Lasing spaser. Nature Photonics , 2008, 2(6): 351-354 doi: 10.1038/nphoton.2008.82
|
12 |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature , 2009, 461(7264): 629-632 doi: 10.1038/nature08364 pmid:19718019
|
13 |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature , 2009, 460(7259): 1110-1112 doi: 10.1038/nature08318 pmid:19684572
|
14 |
Neutens P, Lagae L, Borghs G, Van Dorpe P. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Letters , 2010, 10(4): 1429-1432 doi: 10.1021/nl1003416 pmid:20334350
|
15 |
Koller D M, Honhenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Kernn J R. Organic plasmon-emitting diode. Nature Photonics , 2008, 2(11): 684-687 doi: 10.1038/nphoton.2008.200
|
16 |
Ran G Z, Jiang D F, Kan K, Chen H D. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices. Applied Physics Letters , 2010, 97(23): 3304-3306 doi: 10.1063/1.3525161
|
17 |
Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, N?tzel R, Ning C Z, Smit M K. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics Express , 2009, 17(13): 11107-11112 doi: 10.1364/OE.17.011107 pmid:19550510
|
18 |
Stockman M I. Spasers explained. Nature Photonics , 2008, 2(6): 327-329 doi: 10.1038/nphoton.2008.85
|
19 |
Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials , 2010, 9(3): 193-204 doi: 10.1038/nmat2630 pmid:20168343
|
20 |
Barnes W L. Electromagnetic crystals for surface plasmonpolaritons and the extraction of light from emissive devices. Journal of Lightwave Technology , 1999, 17(11): 2170-2182 doi: 10.1109/50.803008
|
21 |
Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics , 1978, 37: 1-65
|
22 |
Winter G, Wedge S, Barnes W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode? New Journal of Physics , 2006, 8(8): 125 doi: 10.1088/1367-2630/8/8/125
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|