Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 206-224    https://doi.org/10.1007/s12200-016-0631-2
REVIEW ARTICLE
Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications
Swapnajit CHAKRAVARTY1,*(),Xiangning CHEN2,3,Naimei TANG2,Wei-Cheng LAI2,Yi ZOU2,Hai YAN2(),Ray T. CHEN1,2,*
1. Omega Optics Inc., Austin, TX, 78757, USA
2. Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
 Download: PDF(2940 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we reviewed the design principles of two-dimensional (2D) silicon photonic crystal microcavity (PCM) biosensors coupled to photonic crystal waveguides (PCWs). Microcavity radiation loss is controlled by engineered the cavity mode volume. Coupling loss into the waveguide is controlled by adjusting the position of the microcavity from the waveguide. We also investigated the dependence of analyte overlap integral (also called fill fraction) of the resonant mode as well as the effect of group index of the coupling waveguide at the resonant wavelength of the microcavity. In addition to the cavity properties, absorbance of the sensing medium or analyte together with the affinity constant of the probe and target biomarkers involved in the biochemical reaction also limits the minimum detection limits. We summarized our results in applications in cancer biomarker detection, heavy metal sensing and therapeutic drug monitoring.

Keywords photonic crystal (PC) sensor      biosensor      slow light      photonic crystal microcavity (PCM)      photonic crystal waveguide (PCW)      high sensitivity      high specificity      photonic integrated circuits (PICs)      nanophotonics     
Corresponding Author(s): Swapnajit CHAKRAVARTY,Ray T. CHEN   
Just Accepted Date: 16 March 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG, et al. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0631-2
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/206
Fig.1  (a) Device schematic; (b) ink-jet printed biomolecules on PC devices showing spacing between printed spots (scale bar is 10 mm); (c) dispersion diagram of W1 PCW in water. The W1 guided mode is shown together with frequencies of resonant modes for L3, L7 and L13 PCMs by dashed lines. Respective mode profiles are shown in insets
Fig.2  Experimental W1 PCW transmission spectrum in water with coupled (a) L3, (b) L7 and (c) L13 microcavities. Experimental spectra showing shift of resonance mode closest to the band edge in (a), (b) and (c) in (d), (e) and (f) respectively in water (black) versus IPA (blue). Inset (e) magnifies the wavelength range
Fig.3  Plots showing trends in L3, L7 and L13 PCMs for resonant mode (a) quality factor Q in water (open circle), (b) quality factor Q in IPA (open square), (c) approximate mode offset from the transmission band edge (filled square, left offset axis) and (d) wavelength shift from water to IPA (filled triangle, left axis)
Fig.4  (a) Schematic of PCM device; (b) dispersion diagram of W1 PCW inwater. The W1 guided mode is shown together with frequencies of resonant modes for L13 and L21 PCMs by black and red dashed lines respectively. The mode profiles are shown in insets
Fig.5  Q-factors (black squares) and bulk sensitivity (blue triangles) variation of L21 microcavity side coupled to W1 PCW in water versus microcavity location change (L21_2 represents L21 microcavity 2 rows away from the PCW)
Fig.6  (a) 2D FDTD simulated fill fraction/field overlap computed for different PCMs with R = 0.275a (filled circles), R = 0.35a (open circles) and ring resonator (open square). Ring TM value is taken from Ref. [9] for a ring resonator with diameter 30 mm and width 500 nm; (b) SEM image of L13 PC microcavity with defect holes; (c) mode profile of the confined defect mode in (b)
Fig.7  (a) Transmission spectra for PCWs in water with RD = 0.6R; (b) bulk sensitivity computed from experimentally observed resonance wavelength shift from water to glycerol for different RD
Fig.8  Bio sensing spectral shifts (dl) in L13, L21, L55 and L13 defect holed PCMs. 1 M=1 mol/L [52]
Fig.9  Experimental transmission spectrum, showing the resonance modes and mode profiles in the insets
Fig.10  (a) Dispersion diagram in water of the W1 PCW with the coupled L13 PCM mode frequencies A, B, C shown in black, red, blue dotted lines respectively. Simulated group index of the W1 PCW is shown on the right axis; (b) sensitivity values and Q-factors in water of resonance modes A, B and C are shown for W1 as filled circles and filled squares respectively, for W1.025 as open circles and open squares and for W1.05 as crossed circle and crossed squares respectively
Fig.11  Wavelength shift of each resonance modes at different concentration. Solid square dots denote the resonance mode A. Solid circle dots denote mode B, and the solid triangle dots are mode C
target protein probe protein Kd(M), dissociation constant
rabbit anti-goat IgG goat anti-rabbit IgG ~10-6 (Kuo et al., 1993)
human IL-10 IL-10, rat anti-human ~10-9-10-11 (de Groote et al., 1994)
biotin avidin ~10-15 (Scullion et al., 2011)
Tab.1  Target and probe protein conjugates
Fig.12  Resonance wavelength shift of the L13 PCM as a function of concentration for various probe-target conjugates in Table 1 as a function of Kd. Filled circles l: binding of goat anti-rabbit IgG to rabbit anti-goat IgG (Kd ~10-6 mol/L); open circles ○: binding of rat anti-human to human IL-10 (Kd ~10-10 mol/L); open squares □: binding of avidin to biotin (Kd~10-15 mol/L)
Fig.13  Chart comparing minimum detection limits of PCM based biosensors versus other label-free optical platforms as a function of sensing area on chip
Fig.14  Schematic of the PC sensor device with input and output strip waveguide, PC tapers, PC guiding region and L3 PCM; (b) dispersion diagrams of W1 (solid), and W1.08 (dash) PCWs in water (n = 1.33) for PC with a = 392.5 nm. The normalized resonance frequency of the coupled PCM at a = 392.5 nm is denoted by D. C, B, and A denote the normalized resonance frequencies of L3 PCMs in PC regions with a = 393.5, 394 and 396 nm respectively cascaded in series with D (a = 392.5 nm). Group index is plotted and its magnitude at the couplingfrequency indicated in respective colors
Fig.15  Scanning electron micrograph of the fabricated device. (a) Full device with 16 arms; (b) each of the 16 arms with 4 cascaded microcavities; (c) PCW adiabatic group index taper achieved by adiabatic width taper of PCW and high group index region; (d) one of the 4 cascaded microcavities shown in (b); (e) close up of the L3 PCM located 2 rows away from a W1 PCW
Fig.16  Normalized transmission spectral of W1 PCW with coupled series-connected L3 PCMs. (a) 2 cavities, (b) 3 cavities and (c) 4 cavities with index taper; (d) 2 cavities, (e) 3 cavities and (f) 4 cavities without index taper. All spectra are measured in water ambient. Resonant peaks are shown by arrows in (a), (b) and (c). In (c), resonant peaks are also labeled as A, B, C and D corresponding to Fig. 1(b). Inset (b) shows magnified linear scale spectrum of resonance peak closest to the bandedge. The dash line shows the full width at half maximum (FWHM)
Fig.17  Output spectra of high density microarray with a total of 64 sensors integrated into 16 arms inside one device. 4 series-connected L3 microcavity are side coupled to PCW on each arm. All spectra are measured in water. 16 arms are made from a two stage cascaded 1 × 4 MMI in Fig. 15(a)
Fig.18  SEM images of (a) L13 and (b) L13 with nanoholes devices and their respective transmission spectra in (c) and (d), from devices fabricated in a commercial foundry
Fig.19  Dense arrays of devices on a chip multiplexed with MMIs
Fig.20  Plot showing the enhanced sensitivity of L13 with nanohole type of PCM versus conventional L13 PCM, with respect to detection of pancreatic cancer biomarkers
1 Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8(9): 871–874
https://doi.org/10.1016/0019-2791(71)90454-X pmid: 5135623
2 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(9): 4350–4354
https://doi.org/10.1073/pnas.76.9.4350 pmid: 388439
3 Kevil C G, Walsh L, Laroux F S, Kalogeris T, Grisham M B, Alexander J S. An Improved, Rapid Northern Protocol. Biochemical & Biophysical Research Communications, 1977, 238(2): 277–279
4 Ren H C, Vollmer F, Arnold S, Libchaber A. High-Q microsphere biosensor-analysis for adsorption of rodlike bacteria. Optics Express, 2007, 15(25): 17410–17423
https://doi.org/10.1364/OE.15.017410 pmid: 19551035
5 Šípová H, Zhang S, Dudley A M, Galas D, Wang K, Homola J. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Analytical Chemistry, 2010, 82(24): 10110–10115
https://doi.org/10.1021/ac102131s pmid: 21090631
6 Densmore A, Vachon M, Xu D X, Janz S, Ma R, Li Y H, Lopinski G, Delâge A, Lapointe J, Luebbert C C, Liu Q Y, Cheben P, Schmid J H. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Optics Letters, 2009, 34(23): 3598–3600
https://doi.org/10.1364/OL.34.003598 pmid: 19953132
7 Luff B J, Wilkinson J S, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N. Integrated optical Mach-Zehnder biosensor. Journal of Lightwave Technology, 1998, 16(4): 583–592
https://doi.org/10.1109/50.664067
8 Fang Y, Ferrie A M, Fontaine N H, Mauro J, Balakrishnan J. Resonant waveguide grating biosensor for living cell sensing. Biophysical Journal, 2006, 91(5): 1925–1940
https://doi.org/10.1529/biophysj.105.077818 pmid: 16766609
9 Iqbal M, Gleeson M A, Spaugh B, Tybor F, Gunn W G, Hochberg M, Baehr-Jones T, Bailey R C, Gunn L C. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 654–661
https://doi.org/10.1109/JSTQE.2009.2032510
10 Kang C, Phare C T, Vlasov Y A, Assefa S, Weiss S M. Photonic crystal slab sensor with enhanced surface area. Optics Express, 2010, 18(26): 27930–27937
https://doi.org/10.1364/OE.18.027930 pmid: 21197066
11 Block I D, Chan L L, Cunningham B T. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensors and Actuators. B, Chemical, 2006, 120(1): 187–193
https://doi.org/10.1016/j.snb.2006.02.006
12 Skivesen N, Têtu A, Kristensen M, Kjems J, Frandsen L H, Borel P I. Photonic-crystal waveguide biosensor. Optics Express, 2007, 15(6): 3169–3176
https://doi.org/10.1364/OE.15.003169 pmid: 19532555
13 Vashist S K, Luppa P B, Yeo L Y, Ozcan A, Luong J H T. Emerging technologies for next-generation point-of-care testing. Trends in Biotechnology, 2015, 33(11): 692–705
https://doi.org/10.1016/j.tibtech.2015.09.001 pmid: 26463722
14 Liang P S, Park T S, Yoon J Y. Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Scientific Reports, 2014, 4(5953): 5953
https://doi.org/10.1038/srep05953 pmid: 25092261
15 Chakravarty S, Topol’ancik J, Bhattacharya P, Chakrabarti S, Kang Y, Meyerhoff M E. Ion detection with photonic crystal microcavities. Optics Letters, 2005, 30(19): 2578–2580
https://doi.org/10.1364/OL.30.002578 pmid: 16208905
16 Lee M R, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 2007, 15(8): 4530–4535
https://doi.org/10.1364/OE.15.004530 pmid: 19532700
17 Song B S, Noda S, Asano T, Akahane Y. Ultra-high-Q photonic double heterostructure nanocavity. Nature Materials, 2005, 4(3): 207–210
https://doi.org/10.1038/nmat1320
18 Tan C P, Cipriany B R, Lin D M, Craighead H G. Nanoscale resolution, multicomponent biomolecular arrays generated by aligned printing with parylene peel-off. Nano Letters, 2010, 10(2): 719–725
https://doi.org/10.1021/nl903968s pmid: 20088589
19 Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944–947
https://doi.org/10.1038/nature02063 pmid: 14586465
20 Lin C Y, Wang X, Chakravarty S, Lee B S, Lai W C, Chen R T. Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide. Applied Physics Letters, 2010, 97(18): 183302
https://doi.org/10.1063/1.3513814
21 Lai W C, Chakravarty S, Zou Y, Chen R T. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Optics Letters, 2012, 37(7): 1208–1210
https://doi.org/10.1364/OL.37.001208 pmid: 22466197
22 Chakravarty S, Zou Y, Lai W C, Chen R T. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosensors & Bioelectronics, 2012, 38(1): 170–176
https://doi.org/10.1016/j.bios.2012.05.016 pmid: 22748964
23 Zou Y, Chakravarty S, Kwong D N, Lai W C, Xu X, Lin X, Hosseini A, Chen R T. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 6900710
24 Lai W C, Chakravarty S, Zou Y, Guo Y, Chen R T. Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors. Applied Physics Letters, 2013, 102(4): 041111
https://doi.org/10.1063/1.4789857 pmid: 23460758
25 Mortensen N A, Xiao S, Pedersen J. Liquid-infiltrated photonic crystals-enhanced light-matter interactions for lab-on-achip applications. Microfluidics & Nanofluidics, 2008, 4: 117
52 Chakravarty S, Hosseini A, Xu X, Zhu L, Zou Y, Chen R T. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors Applied Physics Letters, 2014, 104(19): 191109
https://doi.org/10.1063/1.4875903
26 Mehta K K, Orcutt J S, Ram R J. Fano line shapes in transmission spectra of silicon photonic crystal resonators. Applied Physics Letters, 2013, 102(8): 081109
https://doi.org/10.1063/1.4794064
27 White I M, Fan X. On the performance quantification of resonant refractive index sensors. Optics Express, 2008, 16(2): 1020–1028
https://doi.org/10.1364/OE.16.001020 pmid: 18542175
28 Lai W C, Chakravarty S, Wang X, Lin C Y, Chen R T. Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Applied Physics Letters, 2011, 98(2): 023304
https://doi.org/10.1063/1.3531560
29 McMahon R J, Avidin-Biotin Interactions: Methods and Applications. Berlin: Humana Press, 2008, 90
30 Rahimi S, Hosseini A, Xu X, Subbaraman H, Chen R T. Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor. Optics Express, 2011, 19(22): 21832–21841
https://doi.org/10.1364/OE.19.021832 pmid: 22109034
31 Nagahara K, Morifuji M, Kondow M. Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal. Photonics and Nanostructures- Fundamentals and Applications, 2011, 9(9): 261–268
32 Subramanian A, Kennel S J, Oden P I, Jacobson K B, Woodward J, Doktycz M J. Comparisons of techniques for enzyme immobilization on silicon supports. Enzyme and Microbial Technology, 1999, 24(1-2): 26–34
https://doi.org/10.1016/S0141-0229(98)00084-2
33 Nelson D L, Cox M M. Lehninger Principles of Biochemistry. 5th ed. New York: W. H. Freeman Macmillan, 2008
34 de Feijter J A, Benjamins J, Veer F A. Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface. Biopolymers, 1978, 17(7): 1759–1772
https://doi.org/10.1016/0022-1759(94)90160-0
53 Kuo S C, Lauffenburger D A. Relationship between receptor/ligand binding affinity and adhesion strength. Biophysical Journal, 1993, 65(5): 2191–2200
https://doi.org/10.1002/bip.1978.360170711
54 de Groote D, Marchant A, Fauchet F, Jadoul M, Dehart I, Gérard C, Gevaert Y, Lopez M, Gathy R, Franssen J D, Radoux D, Franchimont P J. Characterisation of monoclonal antibodies against human interleukin-10 and their use in an ELISA for the measurement of this cytokine. Journal of Immunological Methods, 1994, 177(1-2): 225–234
https://doi.org/doi:10.1016/S0006-3495(93)81277-3
41 Scullion M G, Di Falco A, Krauss T F. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosensors and Bioelectronics, 2011, 27(1): 101–105
35 Li H, Fan X. Characterization of sensing capability of optofluidic ring resonator biosensors. Applied Physics Letters, 2010, 97(1): 011105
https://doi.org/10.1063/1.3462296
36 Barrios C A. Optical slot-waveguide based biochemical sensors. Sensors (Basel, Switzerland), 2009, 9(6): 4751–4765
https://doi.org/10.3390/s90604751 pmid: 22408552
37 de Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15(12): 7610–7615
https://doi.org/10.1364/OE.15.007610 pmid: 19547087
38 Carlborg C F, Gylfason K B, Kaźmierczak A, Dortu F, Bañuls Polo M J, Maquieira Catala A, Kresbach G M, Sohlström H, Moh T, Vivien L, Popplewell J, Ronan G, Barrios C A, Stemme G, van der Wijngaart W. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab on a Chip, 2010, 10(3): 281–290
https://doi.org/10.1039/B914183A pmid: 20090999
39 Dorfner D, Zabel T, Hurlimann T, Hauke N, Frandsen L, Rant U, Abstreiter G, Finley J. Photonic crystal nanostructures for optical biosensing applications. Biosensors and Bioelectronics, 2009, 24(12): 3688–3692
40 Mandal S, Erickson D. Nanoscale optofluidic sensor arrays. Optics Express, 2008, 16(3): 1623–1631
https://doi.org/10.1364/OE.16.001623 pmid: 18542241
42 Zlatanovic S, Mirkarimi L W, Sigalas M M, Bynum M A, Chow E, Robotti K M, Burr G W, Esener S, Grot A. Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sensors and Actuators. B, Chemical, 2009, 141(1): 13–19
https://doi.org/10.1016/j.snb.2009.06.007
43 Zou Y, Chakravarty S, Lai W C, Lin C Y, Chen R T. Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform. Lab on a Chip, 2012, 12(13): 2309–2312
https://doi.org/10.1039/c2lc40081b pmid: 22522742
44 Guillermain E, Fauchet P M. Resonant microcavities coupled to a photonic crystal waveguide for multichannel biodetection. Materials Research Society Symposium Proceedings, 2009, 1191
https://doi.org/10.1557/PROC-1191–OO11–06
45 Pottier P, Gnan M, De La Rue R M. Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers. Optics Express, 2007, 15(11): 6569–6575
https://doi.org/10.1364/OE.15.006569 pmid: 19546965
46 Zou Y, Chakravarty S, Zhu L, Chen R T. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays. Applied Physics Letters, 2014, 104(14): 141103
https://doi.org/10.1063/1.4871012
48 Chakravarty S, Lai W C, Zou Y, Drabkin H A, Gemmill R M, Simon G R, Chin S H, Chen R T. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors. Biosensors & Bioelectronics, 2013, 43: 50–55
https://doi.org/10.1016/j.bios.2012.11.012 pmid: 23274197
49 Yang C J, Tang N, Yan H, Chakravarty S, Li D, Chen R T. 193 nm lithography fabricated high sensitivity photonic crystal microcavity biosensors for plasma protein detection in patients with pancreatic cancer. In: Proceedings of CLEO (Optical Society of America), San Jose, CA. 2015, STu4K.5
50 Yan H, Yang C J, Zou Y, Tang N, Chakravarty S, Chen R T. Wide dynamic range specific detection of therapeutic drugs by photonic crystal microcavity arrays. In: Proceedings of CLEO (Optical Society of America), San Jose, CA. 2015, STu4K.2
51 Yan H, Tang N, Chakravarty S, Blake DA, Chen RT. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals. 2016, submitted
[1] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[2] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
[3] Ping ZHAO, Zhao WU, Kaisheng CHEN, Xinliang ZHANG. Hybrid fabricating of silica micro/nanofibers[J]. Front Optoelec Chin, 2011, 4(3): 338-342.
[4] Yingtao HU, Xi XIAO, Zhiyong LI, Yuntao LI, Yude YU, Jinzhong YU. Slow light in silicon microring resonators[J]. Front Optoelec Chin, 2011, 4(3): 282-287.
[5] Eric CASSAN, Xavier LE ROUX, Charles CAER, Ran HAO, Damien BERNIER, Delphine MARRIS-MORINI, Laurent VIVIEN. Silicon slow light photonic crystals structures: present achievements and future trends[J]. Front Optoelec Chin, 2011, 4(3): 243-253.
[6] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed