Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 63-67    https://doi.org/10.1007/s12200-012-0184-y
RESEARCH ARTICLE
Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide
Gongli XIAO1,2, Xiang JI1, Linfei GAO1, Xingjun WANG1, Zhiping ZHOU1()
1. The State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China; 2. Information and Communications College, Guilin University of Electronic Technology, Guilin 541004, China
 Download: PDF(373 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study uses a dipole embedded in Al2O3 layer to excite a symmetric surface plasmon polariton (SPP) mode in Au/Al2O3/Au waveguide to investigate its profile properties by using finite-difference time-domain (FDTD) method. The excited dipole decay radiatively direct near-field coupling to SPP mode owing to thin Al2O3 layer of 100 nm. The effects of electric and magnetic field intensity profiles and decay length have been considered and characterized. It is found that dipole location is an important factor to influence the horizontal and vertical profile properties of symmetric SPP mode in Au/Al2O3/Au waveguide. The amplitudes of electric and magnetic field intensity and the wavelengths of metal-insulator-metal (MIM) SPP resonance mode can be tuned by varying dipole location. The horizontal and vertical decay lengths are 19 and 24 nm, respectively. It is expected that the Au/Al2O3/Au waveguide structure is very useful for the practical applications of designing a SPP source.

Keywords waveguide      surface plasmon polariton (SPP)      profile properties     
Corresponding Author(s): ZHOU Zhiping,Email:zjzhou@pku.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Gongli XIAO,Xiang JI,Linfei GAO, et al. Effect of dipole location on profile properties of symmetric surface plasmon polariton mode in Au/Al2O3/Au waveguide[J]. Front Optoelec, 2012, 5(1): 63-67.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0184-y
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/63
Fig.1  Schematic structure of proposed Au/AlO/Au waveguide composed of two identical Au films separated by an insulator layers AlO, and a dipole is embedded in AlO layer to excite a MIM SPP mode for forward propagating
Fig.2  (a) Horizontal profiles of electric field (E) intensity at bottom AlO/Au interface as a function of dipole distance; (b) electric (E) field peak intensity and SPP resonance wavelength as function of dipole distance
Fig.3  (a) Horizontal profiles of magnetic field (H) intensity at bottom AlO/Au interface as function of dipole distance; (b) magnetic field (H) peak intensity and SPP resonance wavelength as function of dipole distance
Fig.4  Vertical profiles of electric field (E) intensity of corresponding MIM SPP resonance mode along -axis as function of dipole distance. Inset, dependence of electric field dip intensity on dipole distances
Fig.5  Vertical profiles of magnetic field (H) intensity of corresponding MIM SPP resonance mode along -axis as function of dipole distance. Inset, dependence of magnetic field dip intensity on dipole distances
1 Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer, 1988
2 Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature , 2003, 424(6950): 824-830
doi: 10.1038/nature01937 pmid:12917696
3 Hu F F, Yi H X, Zhou Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Optics Letters , 2011, 36(8): 1500-1502
doi: 10.1364/OL.36.001500 pmid:21499403
4 Hossieni A, Massoud Y H. A low-loss metal-insulator-metal plasmonic bragg reflector. Optics Express , 2006, 14(23): 11318-11323
doi: 10.1364/OE.14.011318 pmid:19529548
5 Hu F F, Yi H X, Zhou Z P. Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Optics Express , 2011, 19(6): 4848-4855
doi: 10.1364/OE.19.004848 pmid:21445120
6 Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters , 2003, 82(8): 1158-1160
doi: 10.1063/1.1557323
7 Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express , 2005, 13(17): 6645-6650
doi: 10.1364/OPEX.13.006645 pmid:19498679
8 Dionne J A, Lezec H J, Atwater H A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Letters , 2006, 6(9): 1928-1932
doi: 10.1021/nl0610477 pmid:16968003
9 Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Optics Letters , 2006, 31(14): 2133-2135
doi: 10.1364/OL.31.002133 pmid:16794703
10 Verhagen E, Dionne J A, Kuipers L K, Atwater H A, Polman A. Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Letters , 2008, 8(9): 2925-2929
doi: 10.1021/nl801781g pmid:18690753
11 Dionne J A, Sweatlock L A, Atwater H A, Polman A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Physical Review B: Condensed Matter and Materials Physics , 2006, 73(3): 035407
doi: 10.1103/PhysRevB.73.035407
12 Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. Journal of Physics D, Applied Physics , 2010, 43(38): 385102
doi: 10.1088/0022-3727/43/38/385102
13 Hryciw A, Jun Y C, Brongersma M L. Plasmonics: electrifying plasmonics on silicon. Nature Materials , 2010, 9(1): 3-4
doi: 10.1038/nmat2598 pmid:20019659
14 Miyazaki H T, Kurokawa Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Physical Review Letters , 2006, 96(9): 097401
doi: 10.1103/PhysRevLett.96.097401 pmid:16606313
15 Zhou J, Hu M, Zhang Y X, Zhang P, Liu W H, Liu S G. Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. Journal of Optics , 2011, 13(3): 035003
doi: 10.1088/2040-8978/13/3/035003
16 Babuty A, Bousseksou A, Tetienne J P, Doyen I M, Sirtori C, Beaudoin G, Sagnes I, De Wilde Y, Colombelli R. Semiconductor surface plasmon sources. Physical Review Letters , 2010, 104(22): 226806
doi: 10.1103/PhysRevLett.104.226806 pmid:20867196
17 Koller D M, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Krenn J R. Organic plasmon-emitting diode. Nature Photonics , 2008, 2(11): 684-687
doi: 10.1038/nphoton.2008.200
18 Walters R J, van Loon R V A, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface Plasmon polaritons. Nature Materials , 2010, 9(1): 21-25
19 Economou E N. Surface plasmons in thin films. Physical Review , 1969, 182(2): 539-554
doi: 10.1103/PhysRev.182.539
20 Johnson P, Christy R. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics , 1972, 6(12): 4370-4379
doi: 10.1103/PhysRevB.6.4370
21 Park J, Kim H, Lee I M, Kim S, Jung J, Lee B. Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity. Optics Express , 2008, 16(21): 16903-16915
doi: 10.1364/OE.16.016903 pmid:18852798
[1] Yue WANG, Jiaxin ZHAO, Qifeng ZHU, Jianping SHEN, Zhongyue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses[J]. Front. Optoelectron., 2019, 12(4): 392-396.
[2] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[3] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[4] Xiaoliang SHEN, Yue WANG, Haitao GUO, Chunxiao LIU. Near-infrared carbon-implanted Er3+/Yb3+ co-doped phosphate glass waveguides[J]. Front. Optoelectron., 2018, 11(3): 291-295.
[5] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[6] Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer[J]. Front. Optoelectron., 2016, 9(4): 571-577.
[7] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[8] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[9] Ya’nan WANG,Yi LUO,Changzheng SUN,Bing XIONG,Jian WANG,Zhibiao HAO,Yanjun HAN,Lai WANG,Hongtao LI. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide[J]. Front. Optoelectron., 2016, 9(2): 323-329.
[10] Yidong HUANG,Kaiyu CUI,Fang LIU,Xue FENG,Wei ZHANG. Novel optoelectronic characteristics from manipulating general energy-bands by nanostructures[J]. Front. Optoelectron., 2016, 9(2): 151-159.
[11] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[12] Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
[13] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[14] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
[15] Dingbo CHEN,Jeffery BLOCH,Rui WANG,Paul K. L. YU. Absorption density control in waveguide photodiode---analysis, design, and demonstration[J]. Front. Optoelectron., 2014, 7(3): 385-392.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed