Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 241-251    https://doi.org/10.1007/s12200-015-0524-9
REVIEW ARTICLE
Recent progress in colloidal quantum dot photovoltaics
Xihua WANG()
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
 Download: PDF(1702 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multi-exciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.

Keywords colloidal quantum dot (CQD)      solar cell      photovoltaics      carrier extraction      light trapping     
Corresponding Author(s): Xihua WANG   
Just Accepted Date: 23 July 2015   Online First Date: 24 August 2015    Issue Date: 18 September 2015
 Cite this article:   
Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0524-9
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/241
Fig.1  Performance of CQD photovoltaics as a function of passivation (reprinted from Ref. [15])
Fig.2  Model and charge transport in CQD photovotlaics (reprinted from Ref. [21])
Fig.3  Inverted quantum junction devices leverage process-compatible n- and p-type CQD solids (reprinted from Ref. [27])
Fig.4  Photovoltaic device architectures and performance (reprinted from Ref. [30])
Fig.5  Fabricated nanostructured CQD solar cells (reprinted from Ref. [36])
Fig.6  Plasmonic−excitonic solar cell device design and characterization (reprinted from Ref. [41])
Fig.7  Illustrating the increased-light-path advantage of pyramid-patterned electrodes (reprinted from Ref. [44])
Fig.8  n-type CQD ink based solar cells (reprinted from Ref. [46])
Fig.9  Illustration of spray-coating technique and finished CQD devices (reprinted from Ref. [47])
  
1 R Rossetti, S Nakahara, L E Brus. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Journal of Chemical Physics, 1983, 79(2): 1086–1088
https://doi.org/10.1063/1.445834
2 C B Murray, D J Norris, M G Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
https://doi.org/10.1021/ja00072a025
3 Y Shirasaki, G J Supran, M G Bawendi, V Bulovic. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23
https://doi.org/10.1038/nphoton.2012.328
4 G Konstantatos, E H Sargent. Colloidal quantum dot photodetectors. Infrared Physics & Technology, 2011, 54(3): 278–282
https://doi.org/10.1016/j.infrared.2010.12.029
5 J Y Kim, O Voznyy, D Zhitomirsky, E H Sargent. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Advanced Materials, 2013, 25(36): 4986–5010
https://doi.org/10.1002/adma.201301947 pmid: 24002864
6 M R Kim, D Ma. Quantum-dot-based solar cells: recent advances, strategies, and challenges. Journal of Physical Chemistry Letters, 2015, 6(1): 85–99
https://doi.org/10.1021/jz502227h
7 I J Kramer, E H Sargent. The architecture of colloidal quantum dot solar cells: materials to devices. Chemical Reviews, 2014, 114(1): 863–882
https://doi.org/10.1021/cr400299t pmid: 24053639
8 X Lan, S Masala, E H Sargent. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233–240
https://doi.org/10.1038/nmat3816 pmid: 24553652
9 A Goetzberger, J Knobloch, B Voß. Crystalline Silicon Solar Cells. 1st ed. New York: John Wiley & Sons Ltd, 1998, 49–86
10 O Voznyy, S M Thon, A H Ip, E H Sargent. Dynamic trap formation and elimination in colloidal quantum dots. Journal of Physical Chemistry Letters, 2013, 4(6): 987–992
https://doi.org/10.1021/jz400125r
11 S M Sze, K K Ng. Physics of Semiconductor Devices. 3rd ed. New York: John Wiley & Sons Ltd, 2007, 7–72
12 C R Ocier, K Whitham, T Hanrath, R D Robinson. nanocrystal field-effect transistors. Journal of Physical Chemistry C, 2014, 118(7): 3377–3385
https://doi.org/10.1021/jp406369a
13 Y Liu, J Tolentino, M Gibbs, R Ihly, C L Perkins, Y Liu, N Crawford, J C Hemminger, M Law. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2·V−1·s−1. Nano Letters, 2013, 13(4): 1578–1587
pmid: 23452235
14 T Otto, C Miller, J Tolentino, Y Liu, M Law, D Yu. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors. Nano Letters, 2013, 13(8): 3463–3469
https://doi.org/10.1021/nl401698z pmid: 23802707
15 A H Ip, S M Thon, S Hoogland, O Voznyy, D Zhitomirsky, R Debnath, L Levina, L R Rollny, G H Carey, A Fischer, K W Kemp, I J Kramer, Z Ning, A J Labelle, K W Chou, A Amassian, E H Sargent. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7(9): 577–582
https://doi.org/10.1038/nnano.2012.127 pmid: 22842552
16 Z Ning, Y Ren, S Hoogland, O Voznyy, L Levina, P Stadler, X Lan, D Zhitomirsky, E H Sargent. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Advanced Materials, 2012, 24(47): 6295–6299
https://doi.org/10.1002/adma.201202942 pmid: 22968838
17 K S Jeong, J Tang, H Liu, J Kim, A W Schaefer, K Kemp, L Levina, X Wang, S Hoogland, R Debnath, L Brzozowski, E H Sargent, J B Asbury. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6(1): 89–99
https://doi.org/10.1021/nn2039164 pmid: 22168594
18 G H Carey, L Levina, R Comin, O Voznyy, E H Sargent. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Advanced Materials, 2015, 27(21): 3325–3330
https://doi.org/10.1002/adma.201405782 pmid: 25899173
19 D Zhitomirsky, O Voznyy, S Hoogland, E H Sargent. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013, 7(6): 5282–5290
https://doi.org/10.1021/nn402197a pmid: 23701285
20 K W Kemp, C T O Wong, S H Hoogland, E H Sargent. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 2013, 103(21): 211101
https://doi.org/10.1063/1.4831982
21 D Zhitomirsky, O Voznyy, L Levina, S Hoogland, K W Kemp, A H Ip, S M Thon, E H Sargent. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5: 3803
https://doi.org/10.1038/ncomms4803 pmid: 24801435
22 G H Carey, I J Kramer, P Kanjanaboos, G Moreno-Bautista, O Voznyy, L Rollny, J A Tang, S Hoogland, E H Sargent. Electronically active impurities in colloidal quantum dot solids. ACS Nano, 2014, 8(11): 11763–11769
https://doi.org/10.1021/nn505343e pmid: 25376698
23 J Tang, H Liu, D Zhitomirsky, S Hoogland, X Wang, M Furukawa, L Levina, E H Sargent. Quantum junction solar cells. Nano Letters, 2012, 12(9): 4889–4894
https://doi.org/10.1021/nl302436r pmid: 22881834
24 K W Kemp, A J Labelle, S M Thon, A H Ip, I J Kramer, S Hoogland, E H Sargent. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Advanced Energy Materials, 2013, 3(7): 917–922
https://doi.org/10.1002/aenm.201201083
25 O Voznyy, D Zhitomirsky, P Stadler, Z Ning, S Hoogland, E H Sargent. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6(9): 8448–8455
https://doi.org/10.1021/nn303364d pmid: 22928602
26 D Zhitomirsky, M Furukawa, J Tang, P Stadler, S Hoogland, O Voznyy, H Liu, E H Sargent. N-type colloidal-quantum-dot solids for photovoltaics. Advanced Materials, 2012, 24(46): 6181–6185
https://doi.org/10.1002/adma.201202825 pmid: 22968808
27 Z Ning, O Voznyy, J Pan, S Hoogland, V Adinolfi, J Xu, M Li, A R Kirmani, J P Sun, J Minor, K W Kemp, H Dong, L Rollny, A Labelle, G Carey, B Sutherland, I Hill, A Amassian, H Liu, J Tang, O M Bakr, E H Sargent. Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13(8): 822–828
https://doi.org/10.1038/nmat4007 pmid: 24907929
28 A Stavrinadis, A K Rath, F P de Arquer, S L Diedenhofen, C Magén, L Martinez, D So, G Konstantatos. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Communications, 2013, 4: 2981
https://doi.org/10.1038/ncomms3981 pmid: 24346430
29 D K Ko, P R Brown, M G Bawendi, V Bulović. p-i-n Heterojunction solar cells with a colloidal quantum-dot absorber layer. Advanced Materials, 2014, 26(28): 4845–4850
https://doi.org/10.1002/adma.201401250 pmid: 24862978
30 C H Chuang, P R Brown, V Bulović, M G Bawendi. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796–801
https://doi.org/10.1038/nmat3984 pmid: 24859641
31 Z Ning, D Zhitomirsky, V Adinolfi, B Sutherland, J Xu, O Voznyy, P Maraghechi, X Lan, S Hoogland, Y Ren, E H Sargent. Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced Materials, 2013, 25(12): 1719–1723
https://doi.org/10.1002/adma.201204502 pmid: 23381974
32 M Yuan, D Zhitomirsky, V Adinolfi, O Voznyy, K W Kemp, Z Ning, X Lan, J Xu, J Y Kim, H Dong, E H Sargent. Doping control via molecularly engineered surface ligand coordination. Advanced Materials, 2013, 25(39): 5586–5592
https://doi.org/10.1002/adma201302802 pmid: 23913360
33 M L Brongersma, Y Cui, S Fan. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
https://doi.org/10.1038/nmat3921 pmid: 24751773
34 I J Kramer, D Zhitomirsky, J D Bass, P M Rice, T Topuria, L Krupp, S M Thon, A H Ip, R Debnath, H C Kim, E H Sargent. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials, 2012, 24(17): 2315–2319
https://doi.org/10.1002/adma.201104832 pmid: 22467240
35 X Lan, J Bai, S Masala, S M Thon, Y Ren, I J Kramer, S Hoogland, A Simchi, G I Koleilat, D Paz-Soldan, Z Ning, A J Labelle, J Y Kim, G Jabbour, E H Sargent. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Advanced Materials, 2013, 25(12): 1769–1773
https://doi.org/10.1002/adma.201203759 pmid: 23293006
36 M M Adachi, A J Labelle, S M Thon, X Lan, S Hoogland, E H Sargent. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Scientific Reports, 2013, 3: 2928
https://doi.org/10.1038/srep02928 pmid: 24121519
37 S M Mahpeykar, Q Xiong, X Wang. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. Optics Express, 2014, 22(S6 Suppl 6): A1576–A1588
38 A Mihi, M Bernechea, D Kufer, G Konstantatos. Coupling resonant modes of embedded dielectric microspheres in solution-processed solar cells. Advanced Optical Materials, 2013, 1(2): 139–143
39 S Kim, J K Kim, J Gao, J H Song, H J An, T S You, T S Lee, J R Jeong, E S Lee, J H Jeong, M C Beard, S Jeong. Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. ACS Applied Materials & Interfaces, 2013, 5(9): 3803–3808
https://doi.org/10.1021/am400443w pmid: 23581816
40 A Mihi, F J Beck, T Lasanta, A K Rath, G Konstantatos. Imprinted electrodes for enhanced light trapping in solution processed solar cells. Advanced Materials, 2014, 26(3): 443–448
https://doi.org/10.1002/adma.201303674 pmid: 24173655
41 D Paz-Soldan, A Lee, S M Thon, M M Adachi, H Dong, P Maraghechi, M Yuan, A J Labelle, S Hoogland, K Liu, E Kumacheva, E H Sargent. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. Nano Letters, 2013, 13(4): 1502–1508
pmid: 23444829
42 F J Beck, A Stavrinadis, S L Diedenhofen, T Lasanta, G Konstantatos. Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics, 2014, 1(11): 1197–1205
https://doi.org/10.1021/ph5002704
43 G I Koleilat, I J Kramer, C T O Wong, S M Thon, A J Labelle, S Hoogland, E H Sargent. Folded-light-path colloidal quantum dot solar cells. Scientific Reports, 2013, 3: 2166
https://doi.org/10.1038/srep02166 pmid: 23835564
44 A J Labelle, S M Thon, S Masala, M M Adachi, H Dong, M Farahani, A H Ip, A Fratalocchi, E H Sargent. Colloidal quantum dot solar cells exploiting hierarchical structuring. Nano Letters, 2015, 15(2): 1101–1108
https://doi.org/10.1021/nl504086v pmid: 25547345
45 A Fischer, L Rollny, J Pan, G H Carey, S M Thon, S Hoogland, O Voznyy, D Zhitomirsky, J Y Kim, O M Bakr, E H Sargent. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Advanced Materials, 2013, 25(40): 5742–5749
https://doi.org/10.1002/adma.201302147 pmid: 23934957
46 Z Ning, H Dong, Q Zhang, O Voznyy, E H Sargent. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano, 2014, 8(10): 10321–10327
https://doi.org/10.1021/nn503569p pmid: 25225786
47 I J Kramer, G Moreno-Bautista, J C Minor, D Kopilovic, E H Sargent. Colloidal quantum dot solar cells on curved and flexible substrates. Applied Physics Letters, 2014, 105(16): 163902
https://doi.org/10.1063/1.4898635
48 I J Kramer, J C Minor, G Moreno-Bautista, L Rollny, P Kanjanaboos, D Kopilovic, S M Thon, G H Carey, K W Chou, D Zhitomirsky, A Amassian, E H Sargent. Efficient spray-coated colloidal quantum dot solar cells. Advanced Materials, 2015, 27(1): 116–121
https://doi.org/10.1002/adma.201403281 pmid: 25382752
49 NREL. The certified efficiency of CQD solar cells, 2015
[1] Jiajia Zheng, Liuchong Fu, Yuming He, Kanghua Li, Yue Lu, Jiayou Xue, Yuxuan Liu, Chong Dong, Chao Chen, Jiang Tang. Fabrication and characterization of ZnO/Se1−xTex solar cells[J]. Front. Optoelectron., 2022, 15(3): 36-.
[2] Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Front. Optoelectron., 2022, 15(3): 39-.
[3] Tae Wook Kim, Sung Hyun Kim, Jae Won Shim, Do Kyung Hwang. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18-.
[4] Seyedeh Leila Mortazavifar, Mohammad Reza Salehi, Mojtaba Shahraki, Ebrahim Abiri. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays[J]. Front. Optoelectron., 2022, 15(1): 6-.
[5] Xinran LI, Yanhui LOU, Zhaokui WANG. Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations[J]. Front. Optoelectron., 2021, 14(4): 499-506.
[6] Kanghua LI, Xuetian LIN, Boxiang SONG, Rokas KONDROTAS, Chong WANG, Yue LU, Xuke YANG, Chao CHEN, Jiang TANG. Rapid thermal evaporation for cadmium selenide thin-film solar cells[J]. Front. Optoelectron., 2021, 14(4): 482-490.
[7] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[8] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[9] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[10] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[11] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[12] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[13] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[14] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
[15] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed