Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (2) : 18    https://doi.org/10.1007/s12200-022-00024-5
Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector
Tae Wook Kim1,2, Sung Hyun Kim2, Jae Won Shim2(), Do Kyung Hwang1,3()
1. Center of Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
2. School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
3. Division of Nano & Information Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
4. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
 Download: PDF(1391 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy harvesting and light detection are key technologies in various emerging optoelectronic applications. The high absorption capability and bandgap tunability of organic semiconductors make them promising candidates for such applications. Herein, a poly(3-hexylthiophene-2,5-diyl) (P3HT):indene-C60 bisadduct (ICBA) bulk heterojunction-based organic photodiode (OPD) was reported, demonstrating dual functionality as an indoor photovoltaic (PV) and as a high-speed photodetector. This OPD demonstrated decent indoor PV performance with a power conversion efficiency (PCE) of (11.6 ± 0.5)% under a light emitting diode (LED) lamp with a luminance of 1000 lx. As a photodetector, this device exhibited a decent photoresponsivity of 0.15 A/W (green light) with an excellent linear dynamic range (LDR) of over 127 dB within the optical power range of 3.74 × 10-7 to 9.6 × 10-2 W/cm2. Furthermore, fast photoswitching behaviors could be observed with the rising/falling times of 14.5/10.4 µs and a cutoff (3 dB) frequency of 37 kHz. These results might pave the way for further development of organic optoelectronic applications.

Keywords Organic semiconductor      Photodiode      Indoor photovoltaics      Photodetector     
Corresponding Author(s): Jae Won Shim,Do Kyung Hwang   
Issue Date: 19 May 2022
 Cite this article:   
Tae Wook Kim,Sung Hyun Kim,Jae Won Shim, et al. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector[J]. Front. Optoelectron., 2022, 15(2): 18.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00024-5
https://academic.hep.com.cn/foe/EN/Y2022/V15/I2/18
1 M.A. Saeed,, S.H. Kim,, H. Kim,, J. Liang,, H.Y. Woo,, T.G. Kim,, H. Yan,, J.W. Shim,: Indoor organic photovoltaics: optimal cell design principles with synergistic parasitic resistance and optical modulation effect. Adv. Energy Mater. 11(27), 2003103 (2021)
https://doi.org/10.1002/aenm.202003103
2 L.K. Ma,, Y.Z. Chen,, P.C.Y. Chow,, G.Y. Zhang,, J.C. Huang,, C. Ma,, J.Q. Zhang,, H. Yin,, A.M.H. Cheung,, K.S. Wong,, S.K. So,, H. Yan,: High-efficiency indoor organic photovoltaics with a band-aligned interlayer. Joule 4(7), 1607–1611 (2020)
https://doi.org/10.1016/j.joule.2020.06.008
3 Y. Cui,, H. Yao,, T. Zhang,, L. Hong,, B. Gao,, K. Xian,, J. Qin,, J. Hou,: 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency. Adv. Mater. 31(42), e1904512 (2019)
https://doi.org/10.1002/adma.201904512
4 Z.C. Ding,, R.Y. Zhao,, Y.J. Yu,, J. Liu,: All-polymer indoor photovoltaics with high open-circuit voltage. J. Mater. Chem. A 7(46), 26533–26539 (2019)
https://doi.org/10.1039/C9TA10040G
5 X. Gong,, M. Tong,, Y. Xia,, W. Cai,, J.S. Moon,, Y. Cao,, G. Yu,, C.L. Shieh,, B. Nilsson,, A.J. Heeger,: High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009)
https://doi.org/10.1126/science.1176706
6 C. Fuentes-Hernandez,, W.F. Chou,, T.M. Khan,, L. Diniz,, J. Lukens,, F.A. Larrain,, V.A. Rodriguez-Toro,, B. Kippelen,: Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370(6517), 698–701 (2020)
https://doi.org/10.1126/science.aba2624
7 H. Ren,, J.D. Chen,, Y.Q. Li,, J.X. Tang,: Recent progress in organic photodetectors and their applications. Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany) 8(1), 2002418 (2021)
https://doi.org/10.1002/advs.202002418
8 M.S. Jang,, S. Yoon,, K.M. Sim,, J. Cho,, D.S. Chung,: Spatial confinement of the optical sensitizer to realize a thin film organic photodetector with high detectivity and thermal stability. J. Phys. Chem. Lett. 9(1), 8–12 (2018)
https://doi.org/10.1021/acs.jpclett.7b02918
9 S.S. Yang,, Z.C. Hsieh,, M.L. Keshtov,, G.D. Sharma,, F.C. Chen,: Toward high-performance polymer photovoltaic devices for low-power indoor applications. Solar RRL 1(12), 1700174 (2017)
https://doi.org/10.1002/solr.201700174
10 B.R. Lee,, J.S. Goo,, Y.W. Kim,, Y.J. You,, H. Kim,, S.K. Lee,, J.W. Shim,, T.G. Kim,: Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications. J. Power Sources 417, 61–69 (2019)
https://doi.org/10.1016/j.jpowsour.2019.02.015
11 S.M. Kim,, M.A. Saeed,, S.H. Kim,, J.W. Shim,: Enhanced hole selecting behavior of WO3 interlayers for efficient indoor organic photovoltaics with high fill-factor. Appl. Surf. Sci. 527, 146840 (2020)
https://doi.org/10.1016/j.apsusc.2020.146840
12 D.K. Hwang,, Y.T. Lee,, H.S. Lee,, Y.J. Lee,, S.H. Shokouh,, J.H. Kyhm,, J. Lee,, H.H. Kim,, T.H. Yoo,, S.H. Nam,, D.I. Son,, B.K. Ju,, M.C. Park,, J.D. Song,, W.K. Choi,, S. Im,: Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Materials 8(1), e233 (2016)
https://doi.org/10.1038/am.2015.137
13 J. Ahn,, J.H. Kang,, J. Kyhm,, H.T. Choi,, M. Kim,, D.H. Ahn,, D.Y. Kim,, I.H. Ahn,, J.B. Park,, S. Park,, Y. Yi,, J.D. Song,, M.C. Park,, S. Im,, D.K. Hwang,: Self-powered visible-invisible multiband detection and imaging achieved using high-performance 2D MoTe2/MoS2 semivertical heterojunction photodiodes. ACS Appl. Mater. Interfaces. 12(9), 10858–10866 (2020)
https://doi.org/10.1021/acsami.9b22288
14 L. Dou,, Y.M. Yang,, J. You,, Z. Hong,, W.H. Chang,, G. Li,, Y. Yang,: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404 (2014)
https://doi.org/10.1038/ncomms6404
[1] Zhenyao CHEN, Junjie MEI, Ye ZHANG, Jishu TAN, Qing XIONG, Changhong CHEN. Interface phonon polariton coupling to enhance graphene absorption[J]. Front. Optoelectron., 2021, 14(4): 445-449.
[2] Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites[J]. Front. Optoelectron., 2021, 14(2): 252-259.
[3] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[4] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[5] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[6] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[7] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[8] Taotao DING,Yu TIAN,Jiangnan DAI,Changqing CHEN. Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors[J]. Front. Optoelectron., 2015, 8(3): 282-288.
[9] Dingbo CHEN,Jeffery BLOCH,Rui WANG,Paul K. L. YU. Absorption density control in waveguide photodiode---analysis, design, and demonstration[J]. Front. Optoelectron., 2014, 7(3): 385-392.
[10] Changping CHEN, Xiangliang JIN, Lizhen TANG, Hongjiao YANG, Jun LUO. Simulation analysis of combined UV/blue photodetector in CMOS process by technology computer-aided design[J]. Front Optoelec, 2014, 7(1): 69-73.
[11] Mohammad KARIMI, Kambiz ABEDI, Mahdi ZAVVARI. InAs/GaAs far infrared quantum ring inter-subband photodetector[J]. Front Optoelec, 2014, 7(1): 84-90.
[12] Mohammad H. AKBARI, Mohsen JALALI. Position dependent circuit model for thin avalanche photodiodes[J]. Front Optoelec, 2013, 6(2): 194-198.
[13] Abbas GHADIMI, Vahid AHMADI, Fatemeh SHAHSHAHANI. SAGCM avalanche photodiode with additional layer and nonuniform electric field[J]. Front Optoelec, 2013, 6(2): 199-209.
[14] Saeed OLYAEE, Mohammad SOROOSH, Mahdieh IZADPANAH. Transfer matrix modeling of avalanche photodiode[J]. Front Optoelec, 2012, 5(3): 317-321.
[15] Chang-Qi MA. Conjugated dendritic oligothiophenes for solution-processed bulk heterojunction solar cells[J]. Front Optoelec Chin, 2011, 4(1): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed