Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 400-406    https://doi.org/10.1007/s12200-018-0851-8
RESEARCH ARTICLE
Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes
Yanli ZHAO1(), Junjie TU1, Jingjing XIANG1, Ke WEN1, Jing XU1, Yang TIAN1, Qiang LI1, Yuchong TIAN1, Runqi WANG1, Wenyang LI1, Mingwei GUO1, Zhifeng LIU2, Qi TANG2
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Wuhan Aroptics-Tech Co., LTD, Wuhan 430074, China
 Download: PDF(236 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the newly proposed temperature dependent dead space model, the breakdown voltage and bandwidth of InP/InGaAs avalanche photodiode (APD) have been investigated in the temperature range from -50°C to 100°C. It was demonstrated that our proposed model is consistent with the experimental results. Our work may provide a guidance to the design of APDs with controllably low temperature coefficient.

Keywords optical communication      separate absorption      grading      charge      and multiplication avalanche photodiode (SAGCM APD)      dead space effect      temperature coefficient     
Corresponding Author(s): Yanli ZHAO   
Just Accepted Date: 16 October 2018   Online First Date: 13 December 2018    Issue Date: 21 December 2018
 Cite this article:   
Yanli ZHAO,Junjie TU,Jingjing XIANG, et al. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0851-8
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/400
Fig.1  Schematic structure of a InP/InGaAs SAGCM APD as well as its corresponding electric field distribution
Fig.2  (a) Simulation of breakdown voltage on basis of the proposed temperature dependent dead space model, and the solid line denotes the linear fit; (b) experimental data and the linear fit of breakdown voltage vs temperature
Fig.3  (a) Simulation of 3 dB bandwidth vs multiplication on basis of the proposed temperature dependent dead space theory; (b) simulation of 3 dB bandwidth vs temperature on basis of the proposed temperature dependent dead space model, and the blue open circles denote the experimental data
1 J CCampbell. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121
https://doi.org/10.1109/JLT.2006.888481
2 NNamekata, S Adachi, SInoue. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Optics Express, 2009, 17(8): 6275–6282
https://doi.org/10.1364/OE.17.006275 pmid: 19365453
3 GWu, Y Jian, EWu, HZeng. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Optics Express, 2009, 17(21): 18782–18787
https://doi.org/10.1364/OE.17.018782 pmid: 20372611
4 NNamekata, S Sasamori, SInoue. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express, 2006, 14(21): 10043–10049
https://doi.org/10.1364/OE.14.010043 pmid: 19529398
5 A RDixon, J F Dynes, Z L Yuan, A W Sharpe, A J Bennett, A J Shields. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters, 2009, 94(23): 231113-1–231113-3
https://doi.org/10.1063/1.3151864
6 C HBennett, F Bessette, GBrassard, LSalvail, JSmolin. Experimental quantum cryptography. Journal of Cryptology, 1992, 5(1): 3–28
https://doi.org/10.1007/BF00191318
7 JZhang, M A Itzler, H, Zbinden J W.PanAdvances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science and Applications, 2015, 4 (5): e286-1–e286-13
8 K SHyun, C Y Park. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. Journal of Applied Physics, 1997, 81(2): 974–984
https://doi.org/10.1063/1.364225
9 ABandyopadhyay, M Jamal Deen, L ETarof, WClark. A simplified approach to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699
10 JXie, J S Ng, C H Tan. An InGaAs/AlAsSb avalanche photodiode with a small temperature coefficient of breakdown. IEEE Photonics Journal, 2013, 5(4): 6800706
https://doi.org/10.1109/JPHOT.2013.2272776
11 L J JTan, D S GOng, J SNg, C HTan, S KJones, YQian, J P R David. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE Journal of Quantum Electronics, 2010, 46(8): 1153–1157
https://doi.org/10.1109/JQE.2010.2044370
12 JXiang, Y Zhao. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation. Optical Engineering (Redondo Beach, Calif.), 2014, 53(4): 046106-1–046106-7
https://doi.org/10.1117/1.OE.53.4.046106
13 YZhao, S He. Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer. Optics Communications, 2006, 265(2): 476–480
https://doi.org/10.1016/j.optcom.2006.03.050
14 Y MEl-Batawy, M JDeen. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344
https://doi.org/10.1109/TED.2005.843884
15 N RDas, M J Deen. On the frequency response of a resonant-cavity-enhanced separate absorption, grading, charge, and multiplication avalanche photodiode. Journal of Applied Physics, 2002, 92(12): 7133–7145
https://doi.org/10.1063/1.1521786
16 YOkuto, C R Crowell. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(8): 3076–3081
https://doi.org/10.1103/PhysRevB.6.3076
17 H FChau, D Pavlidis. Physics based fitting and extrapolation method for measured impact ionization coefficients in III–V semiconductors. Journal of Applied Physics, 1992, 72(2): 531–538
https://doi.org/10.1063/1.351884
18 YZhao, D Zhang, LQin, QTang, R H Wu, J Liu, YZhang, HZhang, XYuan, W Liu. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 2011, 19(9): 8546–8556
https://doi.org/10.1364/OE.19.008546 pmid: 21643105
[1] Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI. Review on partially coherent vortex beams[J]. Front. Optoelectron., 2019, 12(3): 229-248.
[2] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[3] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[4] Runda GUO, Wenzhi ZHANG, Qing ZHANG, Xialei LV, Lei WANG. Efficient deep red phosphorescent OLEDs using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off[J]. Front. Optoelectron., 2018, 11(4): 375-384.
[5] Qingshan JIANG, Ciling ZENG, Fengqiang GU, Ming ZHAO. Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance[J]. Front. Optoelectron., 2017, 10(2): 174-179.
[6] Heng ZHAO,Bo LI,Wenjin WANG,Yi HU,Youqin WANG. Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser[J]. Front. Optoelectron., 2016, 9(4): 592-598.
[7] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[8] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[9] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[10] Hadi GHORBANPOUR, Somaye MAKOUEI. 2-channel all optical demultiplexer based on photonic crystal ring resonator[J]. Front Optoelec, 2013, 6(2): 224-227.
[11] Abbas GHADIMI, Vahid AHMADI, Fatemeh SHAHSHAHANI. SAGCM avalanche photodiode with additional layer and nonuniform electric field[J]. Front Optoelec, 2013, 6(2): 199-209.
[12] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
[13] Guangli WANG, Yi SHI, Lijia PAN, Lin PU, Jin LV, Rong ZHANG, Youdou ZHENG. Charge trapping memory devices employing multi-layered Ge/Si nanocrystals for storage fabricated with ALD and PLD methods[J]. Front Optoelec Chin, 2011, 4(2): 146-149.
[14] Louis M. LEUNG, Yik-Chung LAW, Michael Y. WONG, Tik-Ho LEE, Kin Ming LAI, Lok-Yee TANG. Charge balance materials for homojunction and heterojunction OLED applications[J]. Front Optoelec Chin, 2009, 2(4): 435-441.
[15] Mzee S. MNDEWA, Xiuhua YUAN, Dexiu HUANG. Evaluation of light beams for short and medium range wireless communications[J]. Front Optoelec Chin, 2009, 2(4): 393-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed