Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (1) : 52-68    https://doi.org/10.1007/s12200-019-0910-9
REVIEW ARTICLE
A review of multiple optical vortices generation: methods and applications
Long ZHU, Jian WANG()
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(6799 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical vortices carrying orbital angular momentum (OAM) have attracted increasing interest in recent years. Optical vortices have seen a variety of emerging applications in optical manipulation, optical trapping, optical tweezers, optical vortex knots, imaging, microscopy, sensing, metrology, quantum information processing, and optical communications. In various optical vortices enabled applications, the generation of multiple optical vortices is of great importance. In this review article, we focus on the methods of multiple optical vortices generation and its applications. We review the methods for generating multiple optical vortices in three cases, i.e., 1-to-N collinear OAM modes, 1-to-N OAM mode array and N-to-N collinear OAM modes. Diverse applications of multiple OAM modes in optical communications and non-communication areas are presented. Future trends, perspectives and opportunities are also discussed.

Keywords optical communications      optical vortices      orbital angular momentum (OAM)      mode-division multiplexing (MDM)      mode multicasting     
Corresponding Author(s): Jian WANG   
Online First Date: 15 April 2019    Issue Date: 29 April 2019
 Cite this article:   
Long ZHU,Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0910-9
https://academic.hep.com.cn/foe/EN/Y2019/V12/I1/52
Fig.1  Schematic illustration of multiple optical vortices generation. (a) 1-to-N collinear OAM modes; (b) 1-to-N OAM modes array; (c) N-to-N collinear OAM modes
Fig.2  Multiple OAM modes generation using an all-phase pattern with a combination of two amplitudes and a sliced phase pattern. Left: input OAM state spectrum; middle: amplitude and phase patterns for multicasting; right: generated OAM spectrum [34]
Fig.3  Experimental results of the generated 7 equally spaced OAM modes. (a) Left: the intensity of the input OAM beam; middle: the phase pattern for multicasting; right: the intensity of the beam after multicasting. (b) theoretical and experimental results of the OAM charge spectrum after multicasting [34]
Fig.4  Simulation results of 100 randomly spaced OAM modes with topological charge {±1,±5,±8,±14,±15,±17,±19,±21,±25,±26,±27,±28,±29,±31,±37,±38,±41,±42,±43,±44,±46,±47,±48,±49,±50,±52,±53,±56,±58,±59,±61,±63,±64,±67,±73,±76,±79,±80,±81,±83,±84,±87,±88,±89,±90,±93,±94,±97,±98,±100}. (a) 100 OAM modes spectrum by PSI algorithm; (b) phase pattern for generating 100 OAM modes by PSI algorithm [36]
Fig.5  R-RMSE convergence curves of PSI algorithm. (a) Convergence curve for generating 20 randomly spaced equal-power OAM modes; (b) convergence curve for generating 50 randomly spaced equal-power OAM modes [36]
Fig.6  (a) Phase patterns loaded onto practical SLM for generating 20 randomly spaced OAM modes with topological charge {5, 7, 8, 14, 17, 21, 25, 28, 29, 31, 33, 37, 38, 41, 42, 45, 46, 47, 48, 49} by PSI algorithm, respectively; (b) OAM spectra of the original phase pattern (blue) and realistic SLM phase pattern (red) by PSI algorithm, respectively [36]
Fig.7  Simulation results of weight manipulation of 50 OAM modes with topological charge {10, 15, 20,…, 255}. (a) Target spectrum; (b) spectrum by PSI algorithm [36]
Fig.8  (a) Concept and principle of arbitrary manipulation of spatial amplitude and phase distribution; (b) theoretical and experimental results of multiple OAM modes generation with two phase-only SLMs [37]
Fig.9  Intensity profiles of the generated LG and Bessel modes by manipulation the amplitude and phase independently with two phase-only SLMs [37]
Fig.10  (a) 1D and (c) 2D Dammann vortex gratings with (b) and (d) corresponding results [38]
Fig.11  (a) and (b) Center portion and typical outer areas of the fabricated Dammann vortex grating; (c)−(f) OAM detection results using the fabricated Dammann vortex grating. The topological charges of the input OAM are (c) 0, (d) - 2, (e) - 7 and (f) 12, and the labels show the detection orders [39]
Fig.12  (a) Concept and (b)−(d) simulation results of on-chip OAM mode array emitter on silicon platform [40]
Fig.13  (a) Experimental configuration for observing the generation of an OV lattice using the fabricated on-chip OV lattice emitter; (b) measured near-field intensity distribution of y-polarization light coming out from the emitter; (c) measured far-field intensity distribution of an OV lattice generated by the emitter. The inset shows the zoom-in intensity distribution of OVs; (d) measured intensity distribution of fork-like fringe patterns by interfering the generated OV lattice with a plane wave. The inset shows the zoom-in intensity distribution of fork-like fringe patterns [40]
Fig.14  Schematic of the Dammann vortex grating for multiple collinear OAM modes generation. (a) Gaussian beams incident on the grating at its diffraction angles; (b) Combined coaxial OAM beam with multiple states (b1) propagates in free space. (b2, b3) The simulated intensity pattern and wavefront of the OAM beam, respectively; (c) OAM channels are converted into Gaussian beams and are separated spatially for detection [41]
Fig.15  Experimental results of OAM-based free-space optical communications. (a) Spectra of the OAM states+ 27 and+ 29 with the 80-wavelength WDM system; (b) optical signal-to-noise ratio (OSNR) penalties of the 10 OAM states; (c) bit-error rate (BER) characteristics in the same OAM channel (l = -15) for the 10 different wavelength channels [41]
Fig.16  Schematic of OAM mode sorter for OAM modes multiplexing and demultiplexing [45]
Fig.17  Experimental results of multiple OAM modes generation with OAM mode sorter. (a1)−(c1): Intensity profiles of OAM modes generated by the OAM mode sorter; (a2)−(c2): “spiral” interferograms of each OAM mode; (a3)−(c3): OAM power spectra of each OAM mode [45]
Fig.18  Concept and experimental results of 1-to-34 OAM mode multicasting. (a) Concept and principle of 1-to-34 OAM mode multicasting; (b) measured OAM spectrum of all the multicasted OAM modes; (c) mode crosstalk of all the multicasted OAM modes [46]
Fig.19  (a) Concept, (b) and (c) experimental results of power-controllable OAM mode multicasting [47]
Fig.20  (a) Concept and principle of turbulence compensation for a distorted OAM multicasting link; (b) measured OAM spectrum of all the multicasted OAM modes without turbulence; (c) measured OAM spectrum of all the multicasted OAM modes with turbulence; (d) measured OAM spectrum of all the multicasted OAM modes with turbulence-induced distortion compensation [48]
Fig.21  (a) Experimental setup of obstruction-free data-carrying N-fold Bessel modes multicasting; (b) measured Bessel modes spectrum with and without obstruction; (c) measured BER performance of Bessel modes multicasting [49]
Fig.22  (a) Experimental setup and (b) measured results of the rotational Doppler shift from a white-light source after backscattered by a spinning object. The SLM is encoded with a specific pattern to produce the superposition of different OAM states [31]
Fig.23  Trends, perspectives and opportunities of multiple optical vortices generation [6466]
1 LAllen, M W Beijersbergen, R J C Spreeuw, J P Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185–8189
https://doi.org/10.1103/PhysRevA.45.8185 pmid: 9906912
2 A MYao, M J Padgett. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161–204
https://doi.org/10.1364/AOP.3.000161
3 SFranke-Arnold, L Allen, MPadgett. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299–313
https://doi.org/10.1002/lpor.200810007
4 KDholakia, T Čižmár. Shaping the future of manipulation. Nature Photonics, 2011, 5(6): 335–342
https://doi.org/10.1038/nphoton.2011.80
5 LPaterson, M P MacDonald, J Arlt, WSibbett, P EBryant, KDholakia. Controlled rotation of optically trapped microscopic particles. Science, 2001, 292(5518): 912–914
https://doi.org/10.1126/science.1058591 pmid: 11340200
6 MPadgett, R Bowman. Tweezers with a twist. Nature Photonics, 2011, 5(6): 343–348
https://doi.org/10.1038/nphoton.2011.81
7 M RDennis, R P King, B Jack, KO’Holleran, M JPadgett. Isolated optical vortex knots. Nature Physics, 2010, 6(2): 118–121
https://doi.org/10.1038/nphys1504
8 SBernet, A Jesacher, SFürhapter, CMaurer, MRitsch-Marte. Quantitative imaging of complex samples by spiral phase contrast microscopy. Optics Express, 2006, 14(9): 3792–3805
https://doi.org/10.1364/OE.14.003792 pmid: 19516527
9 AMair, A Vaziri, GWeihs, AZeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412(6844): 313–316
https://doi.org/10.1038/35085529 pmid: 11460157
10 GGibson, J Courtial, MPadgett, MVasnetsov, VPas’ko, SBarnett, SFranke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448–5456
https://doi.org/10.1364/OPEX.12.005448 pmid: 19484105
11 JWang, J Y Yang, I M Fazal, N Ahmed, YYan, HHuang, YRen, Y Yue, SDolinar, MTur, A E Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488–496
https://doi.org/10.1038/nphoton.2012.138
12 NBozinovic, Y Yue, YRen, MTur, P Kristensen, HHuang, A EWillner, SRamachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 2013, 340(6140): 1545–1548
https://doi.org/10.1126/science.1237861 pmid: 23812709
13 A EWillner, J Wang, HHuang. A different angle on light communications. Science, 2012, 337(6095): 655–656
https://doi.org/10.1126/science.1225460 pmid: 22879492
14 MKrenn, J Handsteiner, MFink, RFickler, RUrsin, MMalik, AZeilinger. Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648–13653
https://doi.org/10.1073/pnas.1612023113 pmid: 27856744
15 AWang, L Zhu, SChen, CDu, Q Mo, JWang. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Optics Express, 2016, 24(11): 11716–11726
https://doi.org/10.1364/OE.24.011716 pmid: 27410097
16 A EWillner, H Huang, YYan, YRen, N Ahmed, GXie, CBao, L Li, YCao, ZZhao, J Wang, M P JLavery, MTur, S Ramachandran, A FMolisch, NAshrafi, SAshrafi. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 2015, 7(1): 66–106
https://doi.org/10.1364/AOP.7.000066
17 JWang. Advances in communications using optical vortices. Photonics Research, 2016, 4(5): B14–B28
https://doi.org/10.1364/PRJ.4.000B14
18 JWang. Data information transfer using complex optical fields: a review and perspective. Chinese Optics Letters, 2017, 15(3): 030005–030009
https://doi.org/10.3788/COL201715.030005
19 LZhu, J Liu, QMo, CDu, J Wang. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Optics Express, 2016, 24(15): 16934–16944
https://doi.org/10.1364/OE.24.016934 pmid: 27464145
20 LZhu, A Wang, SChen, JLiu, Q Mo, CDu, JWang. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645
https://doi.org/10.1364/OE.25.025637 pmid: 29041228
21 AWang, L Zhu, LWang, JAi, S Chen, JWang. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047
https://doi.org/10.1364/OE.26.010038 pmid: 29715946
22 AWang, L Zhu, JLiu, CDu, Q Mo, JWang. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Optics Express, 2015, 23(23): 29457–29466
https://doi.org/10.1364/OE.23.029457 pmid: 26698429
23 YJung, Q Kang, HZhou, RZhang, SChen, H Wang, YYang, XJin, F P Payne, S Alam, D JRichardson. Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. Journal of Lightwave Technology, 2017, 35(8): 1363–1368
https://doi.org/10.1109/JLT.2017.2658343
24 GZhu, Z Hu, XWu, CDu, W Luo, YChen, XCai, J Liu, JZhu, SYu. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes. Optics Express, 2018, 26(2): 594–604
https://doi.org/10.1364/OE.26.000594 pmid: 29401942
25 LZhu, G Zhu, AWang, LWang, J Ai, SChen, CDu, J Liu, SYu, JWang. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation. Optics Letters, 2018, 43(8): 1890–1893
https://doi.org/10.1364/OL.43.001890 pmid: 29652391
26 MPadgett, J Courtial, LAllen. Light’s orbital angular momentum. Physics Today, 2004, 57(5): 35–40
https://doi.org/10.1063/1.1768672
27 TSu, R P Scott, S S Djordjevic, N K Fontaine, D J Geisler, X Cai, S J BYoo. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Optics Express, 2012, 20(9): 9396–9402
https://doi.org/10.1364/OE.20.009396 pmid: 22535028
28 AWang, L Zhu, LWang, JAi, S Chen, JWang. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express, 2018, 26(8): 10038–10047
https://doi.org/10.1364/OE.26.010038 pmid: 29715946
29 LZhu, A Wang, SChen, JLiu, Q Mo, CDu, JWang. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express, 2017, 25(21): 25637–25645
https://doi.org/10.1364/OE.25.025637 pmid: 29041228
30 M PLavery, F C Speirits, S M Barnett, M J Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 2013, 341(6145): 537–540
https://doi.org/10.1126/science.1239936 pmid: 23908234
31 MLavery, S Barnett, FSpeirits, MPadgett. Observation of the rotational doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 2014, 1(1): 1–4
https://doi.org/10.1364/OPTICA.1.000001
32 ABelmonte, C Rosales-Guzmán, J PTorres. Measurement of flow vorticity with helical beams of light. Optica, 2015, 2(11): 1002–1005
https://doi.org/10.1364/OPTICA.2.001002
33 LFang, M J Padgett, J Wang. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photonics Reviews, 2017, 11(6): 1700183
https://doi.org/10.1002/lpor.201700183
34 YYan, Y Yue, HHuang, YRen, N Ahmed, MTur, SDolinar, AWillner. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Optics Letters, 2013, 38(19): 3930–3933
https://doi.org/10.1364/OL.38.003930 pmid: 24081091
35 JLin, X C Yuan, S H Tao, R E Burge. Collinear superposition of multiple helical beams generated by a single azimuthally modulated phase-only element. Optics Letters, 2005, 30(24): 3266–3268
https://doi.org/10.1364/OL.30.003266 pmid: 16389800
36 LZhu, J Wang. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Optics Express, 2015, 23(20): 26221–26233
https://doi.org/10.1364/OE.23.026221 pmid: 26480135
37 LZhu, J Wang. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Scientific Reports, 2014, 4(1): 7441
https://doi.org/10.1038/srep07441 pmid: 25501584
38 IMoreno, J A Davis, D M Cottrell, N Zhang, X CYuan. Encoding generalized phase functions on Dammann gratings. Optics Letters, 2010, 35(10): 1536–1538
https://doi.org/10.1364/OL.35.001536 pmid: 20479800
39 NZhang, X C Yuan, R E Burge. Extending the detection range of optical vortices by Dammann vortex gratings. Optics Letters, 2010, 35(20): 3495–3497
https://doi.org/10.1364/OL.35.003495 pmid: 20967111
40 JDu, J Wang. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array. Scientific Reports, 2015, 5(1): 9662
https://doi.org/10.1038/srep09662 pmid: 25951325
41 TLei, M Zhang, YLi, PJia, G N Liu, X Xu, ZLi, CMin, J Lin, CYu, HNiu, X C Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light, Science & Applications, 2015, 4(3): e257
https://doi.org/10.1038/lsa.2015.30
42 G C GBerkhout, M P JLavery, JCourtial, M WBeijersbergen, M JPadgett. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 2010, 105(15): 153601
https://doi.org/10.1103/PhysRevLett.105.153601 pmid: 21230900
43 MMirhosseini, M Malik, ZShi, R WBoyd. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 2013, 4(1): 2781
https://doi.org/10.1038/ncomms3781 pmid: 24216691
44 M P JLavery, G C GBerkhout, JCourtial, M JPadgett. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 2011, 13(6): 064006
https://doi.org/10.1088/2040-8978/13/6/064006
45 HHuang, G Milione, M PLavery, GXie, Y Ren, YCao, NAhmed, TAn Nguyen, D ANolan, M JLi, MTur, R R Alfano, A E Willner. Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 2015, 5: 14931
https://doi.org/10.1038/srep14931 pmid: 26450398
46 SLi, J Wang, XZhang, LZhu, C Li, Q.YangDemonstration of simultaneous 1-to-34 multicasting of OFDM/OQAM 64-QAM signal from single Gaussian mode to multiple orbital angular momentum (OAM) modes. In: Proceedings of Asia Communications and Photonics Conference 2013 Postdeadline. Optical Society of America, 2013, paper AF2E.5
47 SLi, J Wang. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Scientific Reports, 2015, 5(1): 9677
https://doi.org/10.1038/srep09677 pmid: 25989251
48 SLi, J Wang. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Optics Letters, 2016, 41(7): 1482–1485
https://doi.org/10.1364/OL.41.001482 pmid: 27192267
49 LZhu, J Wang. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466
https://doi.org/10.1364/OL.40.005463 pmid: 26625026
50 JDurnin, J Miceli Jr, J HEberly. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
https://doi.org/10.1103/PhysRevLett.58.1499 pmid: 10034453
51 DMcGloin, K Dholakia. Bessel beams: diffraction in a new light. Contemporary Physics, 2005, 46(1): 15–28
https://doi.org/10.1080/0010751042000275259
52 JDurnin, J J Miceli Jr, J H Eberly. Comparison of Bessel and Gaussian beams. Optics Letters, 1988, 13(2): 79
https://doi.org/10.1364/OL.13.000079 pmid: 19741986
53 JDu, J Wang. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions. Optics Letters, 2015, 40(21): 4827–4830
https://doi.org/10.1364/OL.40.004827 pmid: 26512460
54 LZhu, J Wang. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode. Optics Letters, 2015, 40(23): 5463–5466
https://doi.org/10.1364/OL.40.005463 pmid: 26625026
55 SChen, S Li, YZhao, JLiu, L Zhu, AWang, JDu, L Shen, JWang. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Optics Letters, 2016, 41(20): 4680–4683
https://doi.org/10.1364/OL.41.004680 pmid: 28005866
56 SLi, J Wang. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Scientific Reports, 2017, 7(1): 43233
https://doi.org/10.1038/srep43233 pmid: 28230076
57 QZhan. Cylindrical vector beams from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1–57
https://doi.org/10.1364/AOP.1.000001
58 GMilione, M P J Lavery, H Huang, YRen, GXie, T A Nguyen, E Karimi, LMarrucci, D ANolan, R RAlfano, A EWillner. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Optics Letters, 2015, 40(9): 1980–1983
https://doi.org/10.1364/OL.40.001980 pmid: 25927763
59 YZhao, J Wang. High-base vector beam encoding/decoding for visible-light communications. Optics Letters, 2015, 40(21): 4843–4846
https://doi.org/10.1364/OL.40.004843 pmid: 26512464
60 JLiu, S Li, LZhu, AWang, S Chen, CKlitis, CDu, Q Mo, MSorel, SYu, X Cai, JWang. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light, Science & Applications, 2018, 7(3): 17148
https://doi.org/10.1038/lsa.2017.148
61 SShwartz, M Golub, SRuschin. Diffractive optical elements for mode-division multiplexing of temporal signals with the aid of Laguerre-Gaussian modes. Applied Optics, 2013, 52(12): 2659–2669
https://doi.org/10.1364/AO.52.002659 pmid: 23669674
62 GXie, Y Ren, YYan, HHuang, NAhmed, LLi, Z Zhao, CBao, MTur, S Ashrafi, A EWillner. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. Optics Letters, 2016, 41(15): 3447–3450
https://doi.org/10.1364/OL.41.003447 pmid: 27472590
63 A TO’Neil, JCourtial. Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter. Optics Communications, 2000, 181(1–3): 35–45
https://doi.org/10.1016/S0030-4018(00)00736-7
64 XCai, J Wang, M JStrain, BJohnson-Morris, JZhu, M Sorel, J LO’Brien, M GThompson, SYu. Integrated compact optical vortex beam emitters. Science, 2012, 338(6105): 363–366
https://doi.org/10.1126/science.1226528 pmid: 23087243
65 BGuan, R P Scott, C Qin, N KFontaine, TSu, C Ferrari, MCappuzzo, FKlemens, BKeller, MEarnshaw, S J BYoo. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Optics Express, 2014, 22(1): 145–156
https://doi.org/10.1364/OE.22.000145 pmid: 24514976
66 JDu, J Wang. Dielectric metasurfaces enabling twisted light generation/detection/(de)multiplexing for data information transfer. Optics Express, 2018, 26(10): 13183–13194
https://doi.org/10.1364/OE.26.013183 pmid: 29801345
67 ZZhao, J Wang, SLi, A EWillner. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932–934
https://doi.org/10.1364/OL.38.000932 pmid: 23503264
68 YYang, W Wang, PMoitra, I IKravchenko, D PBriggs, JValentine. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399
https://doi.org/10.1021/nl4044482 pmid: 24547692
69 EKarimi, S A Schulz, I De Leon, VQassim, JUpham, R WBoyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light, Science & Applications, 2014, 3(5): e167
https://doi.org/10.1038/lsa.2014.48
70 JWang. Metasurfaces enabling structured light manipulation: advances and perspectives. Chinese Optics Letters, 2018, 16(5): 050006
https://doi.org/10.3788/COL201816.050006
71 GLi, M Kang, SChen, SZhang, E YPun, K WCheah, JLi. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151
https://doi.org/10.1021/nl401734r pmid: 23965168
[1] Chenhao WAN, Guanghao RUI, Jian CHEN, Qiwen ZHAN. Detection of photonic orbital angular momentum with micro- and nano-optical structures[J]. Front. Optoelectron., 2019, 12(1): 88-96.
[2] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[3] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[4] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[5] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[6] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
[7] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed