Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 290-296    https://doi.org/10.1007/s12200-013-0335-9
RESEARCH ARTICLE
Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method
Kambiz ABEDI(), Habib VAHIDI
Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983963113, Iran
 Download: PDF(508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a polymer electro-optic modulator has been designed and optimized using the full vectorial finite element method. For this purpose, the effects of magnesium oxide (MgO) and down cladding thicknesses, distance between two ground electrodes, hot electrode and modulator widths modulator on the key modulator parameters, such as microwave effective index nm, the characteristic impedance ZC and the microwave losses α are presented. After selecting optimal dimensions of polymer electro-optic modulator, frequency dependent aforementioned parameters and the half-wave voltage-length product (VπL) parameter of polymer electro-optic modulator are extracted and as a consequence, an optimized design is reported. Finally, the optical and electrical modulation responses of polymer electro-optic modulator are calculated. The optimized polymer electro-optic modulator exhibits 3-dB electrical bandwidth of 260 GHz and VπL about 2.8 V?cm in this frequency.

Keywords electro-optic modulators      finite element method      integrated optics      optical communication     
Corresponding Author(s): ABEDI Kambiz,Email:K_Abedi@sbu.ac.ir   
Issue Date: 05 September 2013
 Cite this article:   
Kambiz ABEDI,Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0335-9
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/290
Fig.1  Schematic cross section of polymer electro-optic modulator
materialrefractive indexpermittivity
UFC-1701.4882.5
CLD-1/APC1.6123.0
UV-151.5042.5
SiO21.4603.9
MgO1.7309.8
silicon3.88011.7
Tab.1  Relative permittivity and refractive indexes of utilized materials
Fig.2  Results of varying (a) ; (b) ; (c) ; (d) and (e) on microwave important parameters of , and
modulator structure parametervalue/μm
w38
we20
wg3.5
t2
te2
G16
G28
H11.5
H21
H32
H41.7
H52.6
Tab.2  Various dimensions of optimized modulator
Fig.3  Microwave effective index vs frequency along with constant optical effective index
Fig.4  Characteristic impedance of modulator vs frequency
Fig.5  Microwave attenuation vs frequency
Fig.6  Electrical and optical responses of modulator vs frequency
Fig.7  Frequency dependent the half-wave voltage-length product parameter of modulator vs frequency
1 Zhang C, Dalton L R, Oh M C. Low Vp electrooptic modulators from CLD-1 chromophere design and synthesis, material processing, and characterization. Chemistry of Materials , 2001, 13(9): 3043-3050
doi: 10.1021/cm010463j
2 Abedi K, Vahidi H. A polymer electro-optic modulator with ultra wide-band and low driving voltage. Optoelectronics Letters , 2011, 7(6): 423-426
doi: 10.1007/s11801-011-1063-2
3 Gorman T, Haxha S, Ju J J. Ultra-high-speed deeply etched electrooptic polymer modulator with profiled cross section. IEEE Journal of Lightwave Technology , 2009, 27(1): 68-76
doi: 10.1109/JLT.2008.929413
4 Cui Y, Berini P. Modeling and design of GaAs traveling-wave electrooptic modulators based on the planar microstrip structure. IEEE Journal of Lightwave Technology, 2006, 24(6): 2368-2379
doi: 10.1109/JLT.2006.874599
5 Obayya S S A, Haxha S, Rahman B M A, Themistos C, Grattan K T V. Optimization of the optical properties of a deeply etched semiconductor electrooptic modulator. IEEE Journal of Lightwave Technology, 2003, 21(8): 1813-1819
doi: 10.1109/JLT.2003.815507
6 Rahman B M A, Haxha S. Optimization of microwave properties for ultrahigh-speed etched and unetched lithium niobate electrooptic modulators. IEEE Journal of Lightwave Technology , 2002, 20(10): 1856-1863
doi: 10.1109/JLT.2002.803063
7 Gorman T, Haxha S. Thin layer design of X-cut lithium niobate electrooptic modulator with slotted SiO2 substrate. IEEE Photonics Technology Letters , 2008, 20(2): 111-113
doi: 10.1109/LPT.2007.912559
8 Gorman T, Haxha S. Design optimization of Z-cut lithium niobate electrooptic modulator with profiled metal electrodes and waveguides. IEEE Journal of Lightwave Technology , 2007, 25(12): 3722-3729
doi: 10.1109/JLT.2007.909329
9 9. Gill D M, Chowdhury A. Electro-optic polymer-based modulator design and performance for 40 Gb/s system applications. IEEE Journal of Lightwave Technology , 2002, 20(12): 2145-2153
10 Abedi K, Vahidi H. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method. Frontiers of Optoelectronics , 2013, 6(1): 108-113
doi: 10.1007/s12200-012-0296-4
11 Saitoh K, Koshiba M. Full-Vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. IEEE Journal of Lightwave Technology , 2001, 19(3): 405-413
doi: 10.1109/50.918895
12 Koshiba M, Maruyama S, Hirayama E. A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguide problems. IEEE Journal of Lightwave Technology , 1994, 12(3): 495-502
doi: 10.1109/50.285332
13 Luci? R, Bernadi? A, Juri?-Grgi? I. FEM analysis for MTL problems in frequency domain. International Review on Modelling and Simulations (IREMOS) , 2009, 2(3): 249-253
14 Koshiba M, Inoue K. Simple and efficient finite element analysis of microwave and optical waveguides. IEEE Transactions on Microwave Theory and Techniques , 1992, 40(2): 371-377
doi: 10.1109/22.120111
15 Arroyo J, Zapate J. Subspace iteration search method for generalized eigenvalue problems with sparse complex unsymmetrc matrices in finite-element analysis of waveguides. IEEE Transactions on Microwave Theory and Techniques , 1998, 46(8): 1115-1123
doi: 10.1109/22.704954
[1] Yuhan YAO, Zhao CHENG, Jianji DONG, Xinliang ZHANG. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
[2] Chenyang WANG, Hongyu ZHANG, Hongyi YUAN, Jinrui ZHONG, Cuicui LU. Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 73-88.
[3] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[4] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[5] Long ZHU, Jian WANG. A review of multiple optical vortices generation: methods and applications[J]. Front. Optoelectron., 2019, 12(1): 52-68.
[6] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[7] Qingshan JIANG, Ciling ZENG, Fengqiang GU, Ming ZHAO. Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance[J]. Front. Optoelectron., 2017, 10(2): 174-179.
[8] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[9] Xinlun CAI,Michael STRAIN,Siyuan YU,Marc SOREL. Photonic integrated devices for exploiting the orbital angular momentum of light in optical communications[J]. Front. Optoelectron., 2016, 9(3): 518-525.
[10] Junxiang KE,Lilin YI,Tongtong HOU,Weisheng HU. Key technologies in chaotic optical communications[J]. Front. Optoelectron., 2016, 9(3): 508-517.
[11] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[12] Hadi GHORBANPOUR, Somaye MAKOUEI. 2-channel all optical demultiplexer based on photonic crystal ring resonator[J]. Front Optoelec, 2013, 6(2): 224-227.
[13] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
[14] Mzee S. MNDEWA, Xiuhua YUAN, Dexiu HUANG. Evaluation of light beams for short and medium range wireless communications[J]. Front Optoelec Chin, 2009, 2(4): 393-396.
[15] Rujian LIN, Meiwei ZHU, Zheyun ZHOU, Haoshuo CHEN, Jiajun YE. New progress of mm-wave radio-over-fiber system based on OFM[J]. Front Optoelec Chin, 2009, 2(4): 368-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed