|
|
Performance of integrated optical switches based on 2D materials and beyond |
Yuhan YAO, Zhao CHENG, Jianji DONG( ), Xinliang ZHANG |
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.
|
Keywords
two-dimensional (2D) materials
integrated optics
optical switches
performance table
|
Corresponding Author(s):
Jianji DONG
|
Just Accepted Date: 28 June 2020
Online First Date: 10 July 2020
Issue Date: 21 July 2020
|
|
1 |
Q Cheng, M Bahadori, M Glick, S Rumley, K Bergman. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5(11): 1354
https://doi.org/10.1364/OPTICA.5.001354
|
2 |
Q Cheng, S Rumley, M Bahadori, K Bergman. Photonic switching in high performance datacenters. Optics Express, 2018, 26(12): 16022–16043
https://doi.org/10.1364/OE.26.016022
pmid: 30114852
|
3 |
M W Geis, S J Spector, R C Williamson, T M Lyszczarz. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters, 2004, 16(11): 2514–2516
https://doi.org/10.1109/LPT.2004.835194
|
4 |
P Dong, W Qian, H Liang, R Shafiiha, D Feng, G Li, J E Cunningham, A V Krishnamoorthy, M Asghari. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
https://doi.org/10.1364/OE.18.020298
pmid: 20940921
|
5 |
B S Lee, M Zhang, F A S Barbosa, S A Miller, A Mohanty, R St-Gelais, M Lipson. On-chip thermo-optic tuning of suspended microresonators. Optics Express, 2017, 25(11): 12109–12120
https://doi.org/10.1364/OE.25.012109
pmid: 28786569
|
6 |
X Li, H Xu, X Xiao, Z Li, Y Yu, J Yu. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 2014, 39(4): 751–753
https://doi.org/10.1364/OL.39.000751
pmid: 24562197
|
7 |
Y Zhao, X Wang, D Gao, J Dong, X Zhang. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156
https://doi.org/10.1007/s12200-018-0846-5
|
8 |
Q Xu, S Manipatruni, B Schmidt, J Shakya, M Lipson. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express, 2007, 15(2): 430–436
https://doi.org/10.1364/OE.15.000430
pmid: 19532260
|
9 |
S Manipatruni, R K Dokania, B Schmidt, N Sherwood-Droz, C B Poitras, A B Apsel, M Lipson. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185–2187
https://doi.org/10.1364/OL.33.002185
pmid: 18830346
|
10 |
E Timurdogan, C M Sorace-Agaskar, J Sun, E Shah Hosseini, A Biberman, M R Watts. An ultralow power athermal silicon modulator. Nature Communications, 2014, 5(1): 4008
https://doi.org/10.1038/ncomms5008
pmid: 24915772
|
11 |
A C Ferrari, F Bonaccorso, V Fal’ko, K S Novoselov, S Roche, P Bøggild, S Borini, F H Koppens, V Palermo, N Pugno, J A Garrido, R Sordan, A Bianco, L Ballerini, M Prato, E Lidorikis, J Kivioja, C Marinelli, T Ryhänen, A Morpurgo, J N Coleman, V Nicolosi, L Colombo, A Fert, M Garcia-Hernandez, A Bachtold, G F Schneider, F Guinea, C Dekker, M Barbone, Z Sun, C Galiotis, A N Grigorenko, G Konstantatos, A Kis, M Katsnelson, L Vandersypen, A Loiseau, V Morandi, D Neumaier, E Treossi, V Pellegrini, M Polini, A Tredicucci, G M Williams, B H Hong, J H Ahn, J M Kim, H Zirath, B J van Wees, H van der Zant, L Occhipinti, A Di Matteo, I A Kinloch, T Seyller, E Quesnel, X Feng, K Teo, N Rupesinghe, P Hakonen, S R Neil, Q Tannock, T Löfwander , J Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11): 4598–4810
https://doi.org/10.1039/C4NR01600A
pmid: 25707682
|
12 |
F Xia, H Wang, D Xiao, M Dubey, A Ramasubramaniam. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
|
13 |
Z Sun, A Martinez, F Wang. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
https://doi.org/10.1038/nphoton.2016.15
|
14 |
C Koos, P Vorreau, T Vallaitis, P Dumon, W Bogaerts, R Baets, B Esembeson, I Biaggio, T Michinobu, F Diederich, W Freude, J Leuthold. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
https://doi.org/10.1038/nphoton.2009.25
|
15 |
A Melikyan, L Alloatti, A Muslija, D Hillerkuss, P C Schindler, J Li, R Palmer, D Korn, S Muehlbrandt, D Van Thourhout, B Chen, R Dinu, M Sommer, C Koos, M Kohl, W Freude, J Leuthold. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
https://doi.org/10.1038/nphoton.2014.9
|
16 |
T Mueller, F Xia, P Avouris. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
https://doi.org/10.1038/nphoton.2010.40
|
17 |
N Youngblood, C Chen, S J Koester, M Li. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
https://doi.org/10.1038/nphoton.2015.23
|
18 |
I Datta, S H Chae, G R Bhatt, M A Tadayon, B Li, Y Yu, C Park, J Park, L Cao, D N Basov, J Hone, M Lipson. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14(4): 256–262
https://doi.org/10.1038/s41566-020-0590-4
|
19 |
S Wu, S Buckley, J R Schaibley, L Feng, J Yan, D G Mandrus, F Hatami, W Yao, J Vučković, A Majumdar, X Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69–72
https://doi.org/10.1038/nature14290
pmid: 25778703
|
20 |
Y Ye, Z J Wong, X Lu, X Ni, H Zhu, X Chen, Y Wang, X Zhang. Monolayer excitonic laser. Nature Photonics, 2015, 9(11): 733–737
https://doi.org/10.1038/nphoton.2015.197
|
21 |
Y Yao, X Xia, Z Cheng, K Wei, X Jiang, J Dong, H Zhang. All-optical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:10.1109/JSTQE.2020.2982985
https://doi.org/10.1109/JSTQE.2020.2982985
|
22 |
N Youngblood, M Li. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2016, 6(6): 1205–1218
https://doi.org/10.1515/nanoph-2016-0155
|
23 |
K I Bolotin, K J Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, P Kim, H L Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
|
24 |
R Mas-Ballesté, C Gómez-Navarro, J Gómez-Herrero, F Zamora. 2D materials: to graphene and beyond. Nanoscale, 2011, 3(1): 20–30
https://doi.org/10.1039/C0NR00323A
pmid: 20844797
|
25 |
K Kang, S Xie, L Huang, Y Han, P Y Huang, K F Mak, C J Kim, D Muller, J Park. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656–660
https://doi.org/10.1038/nature14417
pmid: 25925478
|
26 |
V Tran, R Soklaski, Y Liang, L Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014, 89(23): 235319
https://doi.org/10.1103/PhysRevB.89.235319
|
27 |
J Qiao, X Kong, Z X Hu, F Yang, W Ji. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
https://doi.org/10.1038/ncomms5475
pmid: 25042376
|
28 |
A Autere, H Jussila, Y Dai, Y Wang, H Lipsanen, Z Sun. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30(24): 1705963
https://doi.org/10.1002/adma.201705963
pmid: 29575171
|
29 |
Y Li, J Zhang, D Huang, H Sun, F Fan, J Feng, Z Wang, C Z Ning. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology, 2017, 12(10): 987–992
https://doi.org/10.1038/nnano.2017.128
pmid: 28737750
|
30 |
K F Mak, C Lee, J Hone, J Shan, T F Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
pmid: 21230799
|
31 |
M Naguib, M Kurtoglu, V Presser, J Lu, J Niu, M Heon, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23(37): 4248–4253
https://doi.org/10.1002/adma.201102306
pmid: 21861270
|
32 |
E Hendry, P J Hale, J Moger, A K Savchenko, S A Mikhailov. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401
https://doi.org/10.1103/PhysRevLett.105.097401
pmid: 20868195
|
33 |
H Zhang, S Virally, Q Bao, L K Ping, S Massar, N Godbout, P Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
https://doi.org/10.1364/OL.37.001856
pmid: 22660052
|
34 |
X Jiang, S Liu, W Liang, S Luo, Z He, Y Ge, H Wang, R Cao, F Zhang, Q Wen, J Li, Q Bao, D Fan, H Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T= F, O, or OH). Laser & Photonics Reviews, 2018, 12(2): 1700229
https://doi.org/10.1002/lpor.201700229
|
35 |
B Jiang, Z Hao, Y Ji, Y Hou, R Yi, D Mao, X Gan, J Zhao. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications, 2020, 9(1): 63
https://doi.org/10.1038/s41377-020-0304-1
pmid: 32337027
|
36 |
T Gu, N Petrone, J F McMillan, A van der Zande, M Yu, G Q Lo, D L Kwong, J Hone, C W Wong. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6(8): 554–559
https://doi.org/10.1038/nphoton.2012.147
|
37 |
J Li, C Liu, H Chen, J Guo, M Zhang, D Dai. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0093
https://doi.org/10.1515/nanoph-2020-0093
|
38 |
D Miller. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185
https://doi.org/10.1109/JPROC.2009.2014298
|
39 |
L Lu, S Zhao, L Zhou, D Li, Z Li, M Wang, X Li, J Chen. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
https://doi.org/10.1364/OE.24.009295
pmid: 27137545
|
40 |
H Jia, Y Xia, L Zhang, J Ding, X Fu, L Yang. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology, 2017, 35(15): 3237–3241
https://doi.org/10.1109/JLT.2017.2664819
|
41 |
B G Lee, N Dupuis. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology, 2019, 37(1): 6–20
https://doi.org/10.1109/JLT.2018.2876828
|
42 |
H Jia, T Zhou, Y Zhao, Y Xia, J Dai, L Zhang, J Ding, X Fu, L Yang. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics, 2018, 7(5): 827–835
https://doi.org/10.1515/nanoph-2017-0116
|
43 |
D Zheng, J D Doménech, W Pan, X Zou, L Yan, D Pérez. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters, 2019, 44(11): 2629
https://doi.org/10.1364/OL.44.002629
|
44 |
Z Li, L Zhou, L Lu, S Zhao, D Li, J Chen. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research, 2016, 4(1): 21
https://doi.org/10.1364/PRJ.4.000021
|
45 |
T J Seok, N Quack, S Han, R S Muller, M C Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3(1): 64
https://doi.org/10.1364/OPTICA.3.000064
|
46 |
S Han, T J Seok, N Quack, B W Yoo, M C Wu. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2(4): 370
https://doi.org/10.1364/OPTICA.2.000370
|
47 |
J Sun, E Timurdogan, A Yaacobi, E S Hosseini, M R Watts. Large-scale nanophotonic phased array. Nature, 2013, 493(7431): 195–199
https://doi.org/10.1038/nature11727
pmid: 23302859
|
48 |
L Yang, T Zhou, H Jia, S Yang, J Ding, X Fu, L Zhang. General architectures for on-chip optical space and mode switching. Optica, 2018, 5(2): 180
https://doi.org/10.1364/OPTICA.5.000180
|
49 |
Y Xiong, R B Priti, O Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4(9): 1098
https://doi.org/10.1364/OPTICA.4.001098
|
50 |
H Jia, T Zhou, L Zhang, J Ding, X Fu, L Yang. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express, 2017, 25(17): 20698–20707
https://doi.org/10.1364/OE.25.020698
pmid: 29041748
|
51 |
T Zhou, H Jia, J Ding, L Zhang, X Fu, L Yang. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express, 2018, 26(7): 8375–8384
https://doi.org/10.1364/OE.26.008375
pmid: 29715805
|
52 |
S Koeber, R Palmer, M Lauermann, W Heni, D L Elder, D Korn, M Woessner, L Alloatti, S Koenig, P C Schindler, H Yu, W Bogaerts, L R Dalton, W Freude, J Leuthold, C Koos. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light, Science & Applications, 2015, 4(2): e255
https://doi.org/10.1038/lsa.2015.28
|
53 |
K Nozaki, T Tanabe, A Shinya, S Matsuo, T Sato, H Taniyama, M Notomi. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
https://doi.org/10.1038/nphoton.2010.89
|
54 |
K Nozaki, A Shinya, S Matsuo, Y Suzaki, T Segawa, T Sato, Y Kawaguchi, R Takahashi, M Notomi. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252
https://doi.org/10.1038/nphoton.2012.2
|
55 |
M Ono, M Hata, M Tsunekawa, K Nozaki, H Sumikura, H Chiba, M Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43
https://doi.org/10.1038/s41566-019-0547-7
|
56 |
X Hu, P Jiang, C Ding, H Yang, Q Gong. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
https://doi.org/10.1038/nphoton.2007.299
|
57 |
M Klein, B H Badada, R Binder, A Alfrey, M McKie, M R Koehler, D G Mandrus, T Taniguchi, K Watanabe, B J LeRoy, J R Schaibley. 2D semiconductor nonlinear plasmonic modulators. Nature Communications, 2019, 10(1): 3264
https://doi.org/10.1038/s41467-019-11186-w
pmid: 31332203
|
58 |
H Wang, N Yang, L Chang, C Zhou, S Li, M Deng, Z Li, Q Liu, C Zhang, Z Li, Y Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468
https://doi.org/10.1364/PRJ.380170
|
59 |
B Chen, H Wu, C Xin, D Dai, L Tong. Flexible integration of free-standing nanowires into silicon photonics. Nature Communications, 2017, 8(1): 20
https://doi.org/10.1038/s41467-017-00038-0
pmid: 28615617
|
60 |
S Yang, D C Liu, Z L Tan, K Liu, Z H Zhu, S Q Qin. CMOS-compatible WS2-based all-optical modulator. ACS Photonics, 2018, 5(2): 342–346
https://doi.org/10.1021/acsphotonics.7b01206
|
61 |
S Yan, X Zhu, L H Frandsen, S Xiao, N A Mortensen, J Dong, Y Ding. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411
https://doi.org/10.1038/ncomms14411
pmid: 28181531
|
62 |
Q Q Song, K X Chen, Z F Hu. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology, 2020, 38(6): 1358–1364
https://doi.org/10.1109/JLT.2019.2955511
|
63 |
Y Liu, H Wang, S Wang, Y Wang, Y Wang, Z Guo, S Xiao, Y Yao, Q Song, H Zhang, K Xu. Highly efficient silicon photonic microheater based on black arsenic–phosphorus. Advanced Optical Materials, 2020, 8(6): 1901526
https://doi.org/10.1002/adom.201901526
|
64 |
Z Cheng, R Cao, J Guo, Y Yao, K Wei, S Gao, Y Wang, J Dong, H Zhang. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:10.1515/nanoph-2019-0510
|
65 |
L Yu, Y Yin, Y Shi, D Dai, S He. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159
https://doi.org/10.1364/OPTICA.3.000159
|
66 |
L Yu, D Dai, S He. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104
https://doi.org/10.1063/1.4905002
|
67 |
C Qiu, Y Yang, C Li, Y Wang, K Wu, J Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046
https://doi.org/10.1038/s41598-017-16989-9
pmid: 29213106
|
68 |
S Gan, C Cheng, Y Zhan, B Huang, X Gan, S Li, S Lin, X Li, J Zhao, H Chen, Q Bao. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249–20255
https://doi.org/10.1039/C5NR05084G
pmid: 26581024
|
69 |
Z Xu, C Qiu, Y Yang, Q Zhu, X Jiang, Y Zhang, W Gao, Y Su. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 2017, 25(16): 19479–19486
https://doi.org/10.1364/OE.25.019479
pmid: 29041141
|
70 |
C Haffner, W Heni, Y Fedoryshyn, J Niegemann, A Melikyan, D L Elder, B Baeuerle, Y Salamin, A Josten, U Koch, C Hoessbacher, F Ducry, L Juchli, A Emboras, D Hillerkuss, M Kohl, L R Dalton, C Hafner, J Leuthold. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
https://doi.org/10.1038/nphoton.2015.127
|
71 |
Z Cheng, X Zhu, M Galili, L H Frandsen, H Hu, S Xiao, J Dong, Y Ding, L K Oxenløwe, X Zhang. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:10.1515/nanoph-2019-0381
|
72 |
X Gan, R J Shiue, Y Gao, K F Mak, X Yao, L Li, A Szep, D Walker Jr, J Hone, T F Heinz, D Englund. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters, 2013, 13(2): 691–696
https://doi.org/10.1021/nl304357u
pmid: 23327445
|
73 |
Y Hu, M Pantouvaki, J Van Campenhout, S Brems, I Asselberghs, C Huyghebaert, P Absil, D Van Thourhout. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
https://doi.org/10.1002/lpor.201500250
|
74 |
C T Phare, Y H Daniel Lee, J Cardenas, M Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514
https://doi.org/10.1038/nphoton.2015.122
|
75 |
C Qiu, W Gao, R Vajtai, P M Ajayan, J Kono, Q Xu. Efficient modulation of 1.55 mm radiation with gated graphene on a silicon microring resonator. Nano Letters, 2014, 14(12): 6811–6815
https://doi.org/10.1021/nl502363u
pmid: 25403029
|
76 |
M Liu, X Yin, X Zhang. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485
https://doi.org/10.1021/nl204202k
pmid: 22332750
|
77 |
Y Gao, R J Shiue, X Gan, L Li, C Peng, I Meric, L Wang, A Szep, D Walker Jr, J Hone, D Englund. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005
https://doi.org/10.1021/nl504860z
pmid: 25700231
|
78 |
V Sorianello, M Midrio, G Contestabile, I Asselberghs, J Van Campenhout, C Huyghebaert, I Goykhman, A K Ott, A C Ferrari, M Romagnoli. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44
https://doi.org/10.1038/s41566-017-0071-6
|
79 |
H Dalir, Y Xia, Y Wang, X Zhang. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 2016, 3(9): 1564–1568
https://doi.org/10.1021/acsphotonics.6b00398
|
80 |
L Alloatti, R Palmer, S Diebold, K P Pahl, B Chen, R Dinu, M Fournier, J M Fedeli, T Zwick, W Freude, C Koos, J Leuthold. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173
https://doi.org/10.1038/lsa.2014.54
|
81 |
M Liu, X Yin, E Ulin-Avila, B Geng, T Zentgraf, L Ju, F Wang, X Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067
pmid: 21552277
|
82 |
D A B Miller. Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20(S2 Suppl 2): A293–A308
https://doi.org/10.1364/OE.20.00A293
pmid: 22418679
|
83 |
L Qiao, W Tang, T Chu. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 2017, 7(1): 42306
https://doi.org/10.1038/srep42306
pmid: 28181557
|
84 |
G T Reed, G Mashanovich, F Y Gardes, D J Thomson. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
https://doi.org/10.1038/nphoton.2010.179
|
85 |
S Yan, X Zhu, J Dong, Y Ding, S Xiao. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0074
https://doi.org/10.1515/nanoph-2020-0074
|
86 |
Y Ding, X Guan, X Zhu, H Hu, S I Bozhevolnyi, L K Oxenløwe, K J Jin, N A Mortensen, S Xiao. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 2017, 9(40): 15576–15581
https://doi.org/10.1039/C7NR05994A
pmid: 28984878
|
87 |
P Ma, Y Salamin, B Baeuerle, A Josten, W Heni, A Emboras, J Leuthold. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 2019, 6(1): 154–161
https://doi.org/10.1021/acsphotonics.8b01234
|
88 |
Y Ding, Z Cheng, X Zhu, K Yvind, J Dong, M Galili, H Hu, N A Mortensen, S Xiao, L K Oxenløwe. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9(2): 317–325
https://doi.org/10.1515/nanoph-2019-0167
|
89 |
D Ansell, I P Radko, Z Han, F J Rodriguez, S I Bozhevolnyi, A N Grigorenko. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 2015, 6(1): 8846
https://doi.org/10.1038/ncomms9846
pmid: 26554944
|
90 |
A Emboras, C Hoessbacher, C Haffner, W Heni, U Koch, P Ma, Y Fedoryshyn, J Niegemann, C Hafner, J Leuthold. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 276–283
https://doi.org/10.1109/JSTQE.2014.2382293
|
91 |
S A Srinivasan, M Pantouvaki, S Gupta, H T Chen, P Verheyen, G Lepage, G Roelkens, K Saraswat, D V Thourhout, P Absil, J V Campenhout. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
https://doi.org/10.1109/JLT.2015.2478601
|
92 |
L Chen, P Dong, M Lipson. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
https://doi.org/10.1364/OE.16.011513
pmid: 18648472
|
93 |
J Liu, R Camacho-Aguilera, J T Bessette, X Sun, X Wang, Y Cai, L C Kimerling, J Michel. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
https://doi.org/10.1016/j.tsf.2011.10.121
|
94 |
Z Wang, B Tian, M Pantouvaki, W Guo, P Absil, J Van Campenhout, C Merckling, D Van Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9(12): 837–842
https://doi.org/10.1038/nphoton.2015.199
|
95 |
Y Liu, Y Huang, X Duan. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323–333
https://doi.org/10.1038/s41586-019-1013-x
pmid: 30894723
|
96 |
S H Bae, H Kum, W Kong, Y Kim, C Choi, B Lee, P Lin, Y Park, J Kim. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18(6): 550–560
https://doi.org/10.1038/s41563-019-0335-2
pmid: 31114063
|
97 |
M G Stanford, P D Rack, D Jariwala. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications, 2018, 2(1): 20
|
98 |
V J Sorger, R Amin, J B Khurgin, Z Ma, H Dalir, S Khan. Scaling vectors of attoJoule per bit modulators. Journal of Optics, 2018, 20(1): 014012
https://doi.org/10.1088/2040-8986/aa9e11
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|