Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (2) : 129-138    https://doi.org/10.1007/s12200-020-1058-3
REVIEW ARTICLE
Performance of integrated optical switches based on 2D materials and beyond
Yuhan YAO, Zhao CHENG, Jianji DONG(), Xinliang ZHANG
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(695 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.

Keywords two-dimensional (2D) materials      integrated optics      optical switches      performance table     
Corresponding Author(s): Jianji DONG   
Just Accepted Date: 28 June 2020   Online First Date: 10 July 2020    Issue Date: 21 July 2020
 Cite this article:   
Yuhan YAO,Zhao CHENG,Jianji DONG, et al. Performance of integrated optical switches based on 2D materials and beyond[J]. Front. Optoelectron., 2020, 13(2): 129-138.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1058-3
https://academic.hep.com.cn/foe/EN/Y2020/V13/I2/129
switching principle material device structure energy consumption /(fJ·bit−1) switching time/ps publication time Ref.
carrier-induced nonlinearity InGaAsP PhC nanocavity 0.66 35 May. 2010 [53]
carrier-induced nonlinearity InGaAsP PhC nanocavity 2.5 44 Feb. 2012 [54]
saturable absorption graphene plasmonic waveguide 35 0.26 Nov. 2019 [55]
optical nonlinearity polymer photonic-bandgap microcavity 520 1.2 Feb. 2008 [56]
third-order nonlinearity WSe2 metallic waveguide 650 0.29 Jul. 2019 [57]
saturable absorption graphene straight waveguide 2100 1.65 Mar. 2020 [58]
carrier-induced nonlinearity CdS free-standing nanowires/silicon waveguides NA NA Jun. 2017 [59]
photoluminescence WS2 straight waveguide NA NA Nov. 2017 [60]
Tab.1  Performance list of all-optical switches with energy consumption and switching time
switching principle device structure tuning efficiency/(mW·FSR−1) rise/decay times /ms publication time Ref.
graphene microheaters silicon PhC waveguides 3.99 0.75/0.525 Feb. 2017 [61]
graphene heater silicon MZI 6.6 980/520 Mar. 2020 [62]
black arsenic-phosphorus microheater silicon MZI 9.48 30/20 Jan. 2020 [63]
thermal-optic effect of black phosphorus silicon MRR 12.2 0.479/0.113 Jan. 2020 [64]
graphene nanoheaters silicon microdisk resonator 47.25 12.8/8.8 Feb. 2016 [65]
graphene heat conductor silicon MZI 141 20/20 Dec. 2014 [66]
thermal conductivity of graphene Si3N4 MRR 683.5 0.253/0.888 Dec. 2017 [67]
graphene heater silicon MRR NA 0.75/0.8 Oct. 2015 [68]
graphene microheater silicon nanobeam cavity 1.5 nm/mW 1.11/1.47 Aug. 2017 [69]
Tab.2  Performance list of thermo-optical switches with tuning efficiency and rise/decay times
switching principle material device structure energy consumption /(fJ·bit−1) operation speed /GHz publication time Ref.
Pockels effect polymer silicon slot waveguide 0.7 NA Feb. 2015 [52]
electro-optic effect polymer plasmonic slot waveguide 25 70 Jul. 2015 [70]
electrically tuning graphene/graphene capacitor silicon PhC waveguide 275 12 Nov. 2019 [71]
electrically gating graphene air-slot PhC nanocavity 340 NA Jan. 2013 [72]
electrically tuning graphene silicon rib waveguide 350 2.6–5.9 Jan. 2016 [73]
electrically tuning graphene/graphene capacitor silicon nitride MRR 800 30 Jul. 2015 [74]
gate tuning Fermi level graphene silicon MRR 900 NA Nov. 2014 [75]
electrically tuning Fermi level double-layer graphene silicon waveguide 1000 1 Feb. 2012 [76]
electrically gating graphene-boron nitride heterostructure silicon PhC nanocavity 1000 1.2 Feb. 2015 [77]
electrically tuning graphene silicon MZI 1000 5 Dec. 2017 [78]
electrically gating graphene/graphene capacitor silicon straight waveguide 1400 35 Sep. 2016 [79]
Pockels effect polymer silicon slot waveguide NA 100 May. 2014 [80]
electrically tuning Fermi level graphene silicon bus waveguide NA 1.2 May. 2011 [81]
Tab.3  Performance list of electro-optical switches with energy consumption and operation speed
Fig.1  (a) Trends in energy consumption of all-optical and electro-optical switches over time. (b) Trends in the energy consumption of thermo-optical switches over time
Fig.2  Trends in the switching time of all-optical, electro-optical, and thermo-optical switches over time. The switching time is the average of the rise and decay times
Fig.3  (a) Performance of various all-optical switches. (b) Performance of various thermo-optical switches. (c) Performance of various electro-optical switches. The switching time and switching energy per bit/tuning efficiency are indicated for switches using a photonic-crystal waveguide (PhCW) [53,54,61,71], plasmonic waveguide (WG) [55,57,70], straight waveguide [58,76,79], rib waveguide [73], Mach–Zehnder interferometer (MZI) [62,63,66,78], microdisk [65], and microring resonator (MRR) [64,67,74]
label full name
Arizona University of Arizona
CNIT Consorzio Nazionale per le Telecomunicazioni
Columbia Columbia University
Cornell Cornell University
ETH ETH Zurich
Ghent Ghent University
HIT Harbin Institute of Technology
HUST Huazhong University of Science and Technology
KIT Karlsruhe Institute of Technology
NTT NTT Basic Research Laboratories
Rice Rice University
SJTU Shanghai Jiao Tong University
SUDA Soochow University
UCB University of California at Berkeley
UESTC University of Electronic Science and Technology
UT Austin University of Texas at Austin
ZJU Zhejiang University
  Table A1 Explanatory notes of the labels used in Figs. 1 and 2
1 Q Cheng, M Bahadori, M Glick, S Rumley, K Bergman. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5(11): 1354
https://doi.org/10.1364/OPTICA.5.001354
2 Q Cheng, S Rumley, M Bahadori, K Bergman. Photonic switching in high performance datacenters. Optics Express, 2018, 26(12): 16022–16043
https://doi.org/10.1364/OE.26.016022 pmid: 30114852
3 M W Geis, S J Spector, R C Williamson, T M Lyszczarz. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters, 2004, 16(11): 2514–2516
https://doi.org/10.1109/LPT.2004.835194
4 P Dong, W Qian, H Liang, R Shafiiha, D Feng, G Li, J E Cunningham, A V Krishnamoorthy, M Asghari. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
https://doi.org/10.1364/OE.18.020298 pmid: 20940921
5 B S Lee, M Zhang, F A S Barbosa, S A Miller, A Mohanty, R St-Gelais, M Lipson. On-chip thermo-optic tuning of suspended microresonators. Optics Express, 2017, 25(11): 12109–12120
https://doi.org/10.1364/OE.25.012109 pmid: 28786569
6 X Li, H Xu, X Xiao, Z Li, Y Yu, J Yu. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 2014, 39(4): 751–753
https://doi.org/10.1364/OL.39.000751 pmid: 24562197
7 Y Zhao, X Wang, D Gao, J Dong, X Zhang. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156
https://doi.org/10.1007/s12200-018-0846-5
8 Q Xu, S Manipatruni, B Schmidt, J Shakya, M Lipson. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express, 2007, 15(2): 430–436
https://doi.org/10.1364/OE.15.000430 pmid: 19532260
9 S Manipatruni, R K Dokania, B Schmidt, N Sherwood-Droz, C B Poitras, A B Apsel, M Lipson. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185–2187
https://doi.org/10.1364/OL.33.002185 pmid: 18830346
10 E Timurdogan, C M Sorace-Agaskar, J Sun, E Shah Hosseini, A Biberman, M R Watts. An ultralow power athermal silicon modulator. Nature Communications, 2014, 5(1): 4008
https://doi.org/10.1038/ncomms5008 pmid: 24915772
11 A C Ferrari, F Bonaccorso, V Fal’ko, K S Novoselov, S Roche, P Bøggild, S Borini, F H Koppens, V Palermo, N Pugno, J A Garrido, R Sordan, A Bianco, L Ballerini, M Prato, E Lidorikis, J Kivioja, C Marinelli, T Ryhänen, A Morpurgo, J N Coleman, V Nicolosi, L Colombo, A Fert, M Garcia-Hernandez, A Bachtold, G F Schneider, F Guinea, C Dekker, M Barbone, Z Sun, C Galiotis, A N Grigorenko, G Konstantatos, A Kis, M Katsnelson, L Vandersypen, A Loiseau, V Morandi, D Neumaier, E Treossi, V Pellegrini, M Polini, A Tredicucci, G M Williams, B H Hong, J H Ahn, J M Kim, H Zirath, B J van Wees, H van der Zant, L Occhipinti, A Di Matteo, I A Kinloch, T Seyller, E Quesnel, X Feng, K Teo, N Rupesinghe, P Hakonen, S R Neil, Q Tannock, T Löfwander , J Kinaret. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11): 4598–4810
https://doi.org/10.1039/C4NR01600A pmid: 25707682
12 F Xia, H Wang, D Xiao, M Dubey, A Ramasubramaniam. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
13 Z Sun, A Martinez, F Wang. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
https://doi.org/10.1038/nphoton.2016.15
14 C Koos, P Vorreau, T Vallaitis, P Dumon, W Bogaerts, R Baets, B Esembeson, I Biaggio, T Michinobu, F Diederich, W Freude, J Leuthold. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
https://doi.org/10.1038/nphoton.2009.25
15 A Melikyan, L Alloatti, A Muslija, D Hillerkuss, P C Schindler, J Li, R Palmer, D Korn, S Muehlbrandt, D Van Thourhout, B Chen, R Dinu, M Sommer, C Koos, M Kohl, W Freude, J Leuthold. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
https://doi.org/10.1038/nphoton.2014.9
16 T Mueller, F Xia, P Avouris. Graphene photodetectors for high-speed optical communications. Nature Photonics, 2010, 4(5): 297–301
https://doi.org/10.1038/nphoton.2010.40
17 N Youngblood, C Chen, S J Koester, M Li. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
https://doi.org/10.1038/nphoton.2015.23
18 I Datta, S H Chae, G R Bhatt, M A Tadayon, B Li, Y Yu, C Park, J Park, L Cao, D N Basov, J Hone, M Lipson. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14(4): 256–262
https://doi.org/10.1038/s41566-020-0590-4
19 S Wu, S Buckley, J R Schaibley, L Feng, J Yan, D G Mandrus, F Hatami, W Yao, J Vučković, A Majumdar, X Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69–72
https://doi.org/10.1038/nature14290 pmid: 25778703
20 Y Ye, Z J Wong, X Lu, X Ni, H Zhu, X Chen, Y Wang, X Zhang. Monolayer excitonic laser. Nature Photonics, 2015, 9(11): 733–737
https://doi.org/10.1038/nphoton.2015.197
21 Y Yao, X Xia, Z Cheng, K Wei, X Jiang, J Dong, H Zhang. All-optical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:10.1109/JSTQE.2020.2982985
https://doi.org/10.1109/JSTQE.2020.2982985
22 N Youngblood, M Li. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2016, 6(6): 1205–1218
https://doi.org/10.1515/nanoph-2016-0155
23 K I Bolotin, K J Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, P Kim, H L Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
24 R Mas-Ballesté, C Gómez-Navarro, J Gómez-Herrero, F Zamora. 2D materials: to graphene and beyond. Nanoscale, 2011, 3(1): 20–30
https://doi.org/10.1039/C0NR00323A pmid: 20844797
25 K Kang, S Xie, L Huang, Y Han, P Y Huang, K F Mak, C J Kim, D Muller, J Park. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656–660
https://doi.org/10.1038/nature14417 pmid: 25925478
26 V Tran, R Soklaski, Y Liang, L Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014, 89(23): 235319
https://doi.org/10.1103/PhysRevB.89.235319
27 J Qiao, X Kong, Z X Hu, F Yang, W Ji. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
https://doi.org/10.1038/ncomms5475 pmid: 25042376
28 A Autere, H Jussila, Y Dai, Y Wang, H Lipsanen, Z Sun. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30(24): 1705963
https://doi.org/10.1002/adma.201705963 pmid: 29575171
29 Y Li, J Zhang, D Huang, H Sun, F Fan, J Feng, Z Wang, C Z Ning. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology, 2017, 12(10): 987–992
https://doi.org/10.1038/nnano.2017.128 pmid: 28737750
30 K F Mak, C Lee, J Hone, J Shan, T F Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805 pmid: 21230799
31 M Naguib, M Kurtoglu, V Presser, J Lu, J Niu, M Heon, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23(37): 4248–4253
https://doi.org/10.1002/adma.201102306 pmid: 21861270
32 E Hendry, P J Hale, J Moger, A K Savchenko, S A Mikhailov. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401
https://doi.org/10.1103/PhysRevLett.105.097401 pmid: 20868195
33 H Zhang, S Virally, Q Bao, L K Ping, S Massar, N Godbout, P Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
https://doi.org/10.1364/OL.37.001856 pmid: 22660052
34 X Jiang, S Liu, W Liang, S Luo, Z He, Y Ge, H Wang, R Cao, F Zhang, Q Wen, J Li, Q Bao, D Fan, H Zhang. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T= F, O, or OH). Laser & Photonics Reviews, 2018, 12(2): 1700229
https://doi.org/10.1002/lpor.201700229
35 B Jiang, Z Hao, Y Ji, Y Hou, R Yi, D Mao, X Gan, J Zhao. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications, 2020, 9(1): 63
https://doi.org/10.1038/s41377-020-0304-1 pmid: 32337027
36 T Gu, N Petrone, J F McMillan, A van der Zande, M Yu, G Q Lo, D L Kwong, J Hone, C W Wong. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6(8): 554–559
https://doi.org/10.1038/nphoton.2012.147
37 J Li, C Liu, H Chen, J Guo, M Zhang, D Dai. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0093
https://doi.org/10.1515/nanoph-2020-0093
38 D Miller. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185
https://doi.org/10.1109/JPROC.2009.2014298
39 L Lu, S Zhao, L Zhou, D Li, Z Li, M Wang, X Li, J Chen. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
https://doi.org/10.1364/OE.24.009295 pmid: 27137545
40 H Jia, Y Xia, L Zhang, J Ding, X Fu, L Yang. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology, 2017, 35(15): 3237–3241
https://doi.org/10.1109/JLT.2017.2664819
41 B G Lee, N Dupuis. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology, 2019, 37(1): 6–20
https://doi.org/10.1109/JLT.2018.2876828
42 H Jia, T Zhou, Y Zhao, Y Xia, J Dai, L Zhang, J Ding, X Fu, L Yang. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics, 2018, 7(5): 827–835
https://doi.org/10.1515/nanoph-2017-0116
43 D Zheng, J D Doménech, W Pan, X Zou, L Yan, D Pérez. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters, 2019, 44(11): 2629
https://doi.org/10.1364/OL.44.002629
44 Z Li, L Zhou, L Lu, S Zhao, D Li, J Chen. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research, 2016, 4(1): 21
https://doi.org/10.1364/PRJ.4.000021
45 T J Seok, N Quack, S Han, R S Muller, M C Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3(1): 64
https://doi.org/10.1364/OPTICA.3.000064
46 S Han, T J Seok, N Quack, B W Yoo, M C Wu. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2(4): 370
https://doi.org/10.1364/OPTICA.2.000370
47 J Sun, E Timurdogan, A Yaacobi, E S Hosseini, M R Watts. Large-scale nanophotonic phased array. Nature, 2013, 493(7431): 195–199
https://doi.org/10.1038/nature11727 pmid: 23302859
48 L Yang, T Zhou, H Jia, S Yang, J Ding, X Fu, L Zhang. General architectures for on-chip optical space and mode switching. Optica, 2018, 5(2): 180
https://doi.org/10.1364/OPTICA.5.000180
49 Y Xiong, R B Priti, O Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4(9): 1098
https://doi.org/10.1364/OPTICA.4.001098
50 H Jia, T Zhou, L Zhang, J Ding, X Fu, L Yang. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express, 2017, 25(17): 20698–20707
https://doi.org/10.1364/OE.25.020698 pmid: 29041748
51 T Zhou, H Jia, J Ding, L Zhang, X Fu, L Yang. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express, 2018, 26(7): 8375–8384
https://doi.org/10.1364/OE.26.008375 pmid: 29715805
52 S Koeber, R Palmer, M Lauermann, W Heni, D L Elder, D Korn, M Woessner, L Alloatti, S Koenig, P C Schindler, H Yu, W Bogaerts, L R Dalton, W Freude, J Leuthold, C Koos. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light, Science & Applications, 2015, 4(2): e255
https://doi.org/10.1038/lsa.2015.28
53 K Nozaki, T Tanabe, A Shinya, S Matsuo, T Sato, H Taniyama, M Notomi. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
https://doi.org/10.1038/nphoton.2010.89
54 K Nozaki, A Shinya, S Matsuo, Y Suzaki, T Segawa, T Sato, Y Kawaguchi, R Takahashi, M Notomi. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252
https://doi.org/10.1038/nphoton.2012.2
55 M Ono, M Hata, M Tsunekawa, K Nozaki, H Sumikura, H Chiba, M Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43
https://doi.org/10.1038/s41566-019-0547-7
56 X Hu, P Jiang, C Ding, H Yang, Q Gong. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
https://doi.org/10.1038/nphoton.2007.299
57 M Klein, B H Badada, R Binder, A Alfrey, M McKie, M R Koehler, D G Mandrus, T Taniguchi, K Watanabe, B J LeRoy, J R Schaibley. 2D semiconductor nonlinear plasmonic modulators. Nature Communications, 2019, 10(1): 3264
https://doi.org/10.1038/s41467-019-11186-w pmid: 31332203
58 H Wang, N Yang, L Chang, C Zhou, S Li, M Deng, Z Li, Q Liu, C Zhang, Z Li, Y Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468
https://doi.org/10.1364/PRJ.380170
59 B Chen, H Wu, C Xin, D Dai, L Tong. Flexible integration of free-standing nanowires into silicon photonics. Nature Communications, 2017, 8(1): 20
https://doi.org/10.1038/s41467-017-00038-0 pmid: 28615617
60 S Yang, D C Liu, Z L Tan, K Liu, Z H Zhu, S Q Qin. CMOS-compatible WS2-based all-optical modulator. ACS Photonics, 2018, 5(2): 342–346
https://doi.org/10.1021/acsphotonics.7b01206
61 S Yan, X Zhu, L H Frandsen, S Xiao, N A Mortensen, J Dong, Y Ding. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411
https://doi.org/10.1038/ncomms14411 pmid: 28181531
62 Q Q Song, K X Chen, Z F Hu. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology, 2020, 38(6): 1358–1364
https://doi.org/10.1109/JLT.2019.2955511
63 Y Liu, H Wang, S Wang, Y Wang, Y Wang, Z Guo, S Xiao, Y Yao, Q Song, H Zhang, K Xu. Highly efficient silicon photonic microheater based on black arsenic–phosphorus. Advanced Optical Materials, 2020, 8(6): 1901526
https://doi.org/10.1002/adom.201901526
64 Z Cheng, R Cao, J Guo, Y Yao, K Wei, S Gao, Y Wang, J Dong, H Zhang. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:10.1515/nanoph-2019-0510
65 L Yu, Y Yin, Y Shi, D Dai, S He. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159
https://doi.org/10.1364/OPTICA.3.000159
66 L Yu, D Dai, S He. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104
https://doi.org/10.1063/1.4905002
67 C Qiu, Y Yang, C Li, Y Wang, K Wu, J Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046
https://doi.org/10.1038/s41598-017-16989-9 pmid: 29213106
68 S Gan, C Cheng, Y Zhan, B Huang, X Gan, S Li, S Lin, X Li, J Zhao, H Chen, Q Bao. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249–20255
https://doi.org/10.1039/C5NR05084G pmid: 26581024
69 Z Xu, C Qiu, Y Yang, Q Zhu, X Jiang, Y Zhang, W Gao, Y Su. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 2017, 25(16): 19479–19486
https://doi.org/10.1364/OE.25.019479 pmid: 29041141
70 C Haffner, W Heni, Y Fedoryshyn, J Niegemann, A Melikyan, D L Elder, B Baeuerle, Y Salamin, A Josten, U Koch, C Hoessbacher, F Ducry, L Juchli, A Emboras, D Hillerkuss, M Kohl, L R Dalton, C Hafner, J Leuthold. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
https://doi.org/10.1038/nphoton.2015.127
71 Z Cheng, X Zhu, M Galili, L H Frandsen, H Hu, S Xiao, J Dong, Y Ding, L K Oxenløwe, X Zhang. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:10.1515/nanoph-2019-0381
72 X Gan, R J Shiue, Y Gao, K F Mak, X Yao, L Li, A Szep, D Walker Jr, J Hone, T F Heinz, D Englund. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters, 2013, 13(2): 691–696
https://doi.org/10.1021/nl304357u pmid: 23327445
73 Y Hu, M Pantouvaki, J Van Campenhout, S Brems, I Asselberghs, C Huyghebaert, P Absil, D Van Thourhout. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
https://doi.org/10.1002/lpor.201500250
74 C T Phare, Y H Daniel Lee, J Cardenas, M Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514
https://doi.org/10.1038/nphoton.2015.122
75 C Qiu, W Gao, R Vajtai, P M Ajayan, J Kono, Q Xu. Efficient modulation of 1.55 mm radiation with gated graphene on a silicon microring resonator. Nano Letters, 2014, 14(12): 6811–6815
https://doi.org/10.1021/nl502363u pmid: 25403029
76 M Liu, X Yin, X Zhang. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485
https://doi.org/10.1021/nl204202k pmid: 22332750
77 Y Gao, R J Shiue, X Gan, L Li, C Peng, I Meric, L Wang, A Szep, D Walker Jr, J Hone, D Englund. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005
https://doi.org/10.1021/nl504860z pmid: 25700231
78 V Sorianello, M Midrio, G Contestabile, I Asselberghs, J Van Campenhout, C Huyghebaert, I Goykhman, A K Ott, A C Ferrari, M Romagnoli. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44
https://doi.org/10.1038/s41566-017-0071-6
79 H Dalir, Y Xia, Y Wang, X Zhang. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 2016, 3(9): 1564–1568
https://doi.org/10.1021/acsphotonics.6b00398
80 L Alloatti, R Palmer, S Diebold, K P Pahl, B Chen, R Dinu, M Fournier, J M Fedeli, T Zwick, W Freude, C Koos, J Leuthold. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173
https://doi.org/10.1038/lsa.2014.54
81 M Liu, X Yin, E Ulin-Avila, B Geng, T Zentgraf, L Ju, F Wang, X Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067 pmid: 21552277
82 D A B Miller. Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20(S2 Suppl 2): A293–A308
https://doi.org/10.1364/OE.20.00A293 pmid: 22418679
83 L Qiao, W Tang, T Chu. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 2017, 7(1): 42306
https://doi.org/10.1038/srep42306 pmid: 28181557
84 G T Reed, G Mashanovich, F Y Gardes, D J Thomson. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
https://doi.org/10.1038/nphoton.2010.179
85 S Yan, X Zhu, J Dong, Y Ding, S Xiao. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:10.1515/nanoph-2020-0074
https://doi.org/10.1515/nanoph-2020-0074
86 Y Ding, X Guan, X Zhu, H Hu, S I Bozhevolnyi, L K Oxenløwe, K J Jin, N A Mortensen, S Xiao. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 2017, 9(40): 15576–15581
https://doi.org/10.1039/C7NR05994A pmid: 28984878
87 P Ma, Y Salamin, B Baeuerle, A Josten, W Heni, A Emboras, J Leuthold. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 2019, 6(1): 154–161
https://doi.org/10.1021/acsphotonics.8b01234
88 Y Ding, Z Cheng, X Zhu, K Yvind, J Dong, M Galili, H Hu, N A Mortensen, S Xiao, L K Oxenløwe. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9(2): 317–325
https://doi.org/10.1515/nanoph-2019-0167
89 D Ansell, I P Radko, Z Han, F J Rodriguez, S I Bozhevolnyi, A N Grigorenko. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 2015, 6(1): 8846
https://doi.org/10.1038/ncomms9846 pmid: 26554944
90 A Emboras, C Hoessbacher, C Haffner, W Heni, U Koch, P Ma, Y Fedoryshyn, J Niegemann, C Hafner, J Leuthold. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 276–283
https://doi.org/10.1109/JSTQE.2014.2382293
91 S A Srinivasan, M Pantouvaki, S Gupta, H T Chen, P Verheyen, G Lepage, G Roelkens, K Saraswat, D V Thourhout, P Absil, J V Campenhout. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
https://doi.org/10.1109/JLT.2015.2478601
92 L Chen, P Dong, M Lipson. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
https://doi.org/10.1364/OE.16.011513 pmid: 18648472
93 J Liu, R Camacho-Aguilera, J T Bessette, X Sun, X Wang, Y Cai, L C Kimerling, J Michel. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
https://doi.org/10.1016/j.tsf.2011.10.121
94 Z Wang, B Tian, M Pantouvaki, W Guo, P Absil, J Van Campenhout, C Merckling, D Van Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9(12): 837–842
https://doi.org/10.1038/nphoton.2015.199
95 Y Liu, Y Huang, X Duan. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323–333
https://doi.org/10.1038/s41586-019-1013-x pmid: 30894723
96 S H Bae, H Kum, W Kong, Y Kim, C Choi, B Lee, P Lin, Y Park, J Kim. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18(6): 550–560
https://doi.org/10.1038/s41563-019-0335-2 pmid: 31114063
97 M G Stanford, P D Rack, D Jariwala. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications, 2018, 2(1): 20
98 V J Sorger, R Amin, J B Khurgin, Z Ma, H Dalir, S Khan. Scaling vectors of attoJoule per bit modulators. Journal of Optics, 2018, 20(1): 014012
https://doi.org/10.1088/2040-8986/aa9e11
[1] Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 235-245.
[2] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[3] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[4] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[5] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[6] Jing DAI,Minming ZHANG,Feiya ZHOU,Deming LIU. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
[7] Kambiz ABEDI, Habib VAHIDI. Design optimization of microwave properties for polymer electro-optic modulator using full vectorial finite element method[J]. Front Optoelec, 2013, 6(3): 290-296.
[8] Kambiz ABEDI, Habib VAHIDI. Structure and microwave properties analysis of substrate removed GaAs/AlGaAs electro-optic modulator structure by finite element method[J]. Front Optoelec, 2013, 6(1): 108-113.
[9] Changkui HU, Deming LIU. Polarization characteristics of subwavelength aluminum wire grating in near infrared[J]. Front Optoelec Chin, 2009, 2(2): 187-191.
[10] Shufeng LI, Chengren LI, Changlie SONG. Theoretical and experimental research on Er-doped and Yb-Er co-doped Al2O3 waveguide amplifiers[J]. Front Optoelec Chin, 2008, 1(3-4): 329-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed