Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (3) : 282-288    https://doi.org/10.1007/s12200-015-0529-4
RESEARCH ARTICLE
Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors
Taotao DING1,Yu TIAN2,Jiangnan DAI1,Changqing CHEN1,*()
1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
 Download: PDF(1632 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, Bi2S3 nanorods were successfully synthesized via a facile one-pot hydrothermal method and characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Then the Bi2S3 nanorods were deposited on Au interdigital electrodes by dip-coating to fabricate photodetectors. The photoresponse properties using Bi2S3 nanorods as a representative system showed a significantly enhanced conductivity and the current-voltage (I-V) characteristic exhibited about ca. 2 orders of magnitude larger than the dark current. The response and decay time was estimated to be ~371.66 and 386 ms, respectively, indicating Bi2S3 may be an excellent candidate for high speed and high-sensitivity photoelectrical switches and light sensitive devices.

Keywords Bi2S3      nanorods      photoresponse property      photodetector     
Corresponding Author(s): Changqing CHEN   
Just Accepted Date: 04 August 2015   Online First Date: 21 August 2015    Issue Date: 18 September 2015
 Cite this article:   
Taotao DING,Yu TIAN,Jiangnan DAI, et al. Building one-dimensional Bi2S3 nanorods as enhanced photoresponding materials for photodetectors[J]. Front. Optoelectron., 2015, 8(3): 282-288.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0529-4
https://academic.hep.com.cn/foe/EN/Y2015/V8/I3/282
Fig.1  (a) XRD pattern of the Bi2S3 nanorods. The pattern shown at bottom is the standard XRD card of Bi2S3 (JPCDS no. 17-0320); (b), (c) and (d) the full spectra, Bi 4f and S 2s region of the XPS spectrum of Bi2S3 nanorods, respectively
Fig.2  (a) and (b) typical SEM images of Bi2S3 nanorods; (c) and (d) TEM image and HRTEM image of Bi2S3 nanorods, respectively
Fig.3  Photoresponsive sensitivity of the Bi2S3 nanorods as a representative system was studied. (a) I-V characteristic of device in the dark and under simulated A M 1.5 illumination; (b) logarithmic plot of (a); (c) time dependence of current of Bi2S3 micro-flower at a bias of 5 V in the dark and under simulated A M 1 illumination; (d) enlarged portion of the 510-513 s and 661-664 s
1 Chen Y C, Cao T, Chen C, Pedramrazi Z, Haberer D, de Oteyza D G, Fischer F R, Louie S G, Crommie M F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nature Nanotechnology, 2015, 10(2): 156–160
https://doi.org/10.1038/nnano.2014.307 pmid: 25581888
2 Rao P M, Cai L, Liu C, Cho I S, Lee C H, Weisse J M, Yang P, Zheng X. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Letters, 2014, 14(2): 1099–1105
https://doi.org/10.1021/nl500022z pmid: 24437363
3 Peng S, Li L, Wu H B, Madhavi S, Lou X W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Advanced Energy Materials, 2015, 5(2): 1401172
4 Tan C, Qi X, Huang X, Yang J, Zheng B, An Z, Chen R, Wei J, Tang B Z, Huang W, Zhang H. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Advanced Materials, 2014, 26(11): 1735–1739
https://doi.org/10.1002/adma.201304562 pmid: 24343907
5 Huang X, Yu H, Chen J, Lu Z, Yazami R, Hng H H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Advanced Materials, 2014, 26(8): 1296–1303
https://doi.org/10.1002/adma.201304467 pmid: 24449491
6 Giri A K, Pal P, Ananthakumar R, Jayachandran M, Mahanty S, Panda A B. 3D hierarchically assembled porous wrinkled-paper-like structure of ZnCo2O4 and Co-ZnO@C as anode materials for lithium-ion batteries. Crystal Growth & Design, 2014, 14(7): 3352–3359
https://doi.org/10.1021/cg500282n
7 Cheng C, Ren W, Zhang H. 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting. Nano Energy, 2014, 5: 132–138
https://doi.org/10.1016/j.nanoen.2014.03.002
8 Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W. Soft solution route to directionally grown ZnOnanorodarrays on Si wafer; room-temperature ultraviolet laser. Advanced Materials, 2003, 15(22): 1911–1914
https://doi.org/10.1002/adma.200305327
9 Huang H, Pan L, Lim C K, Gong H, Guo J, Tse M S, Tan O K. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. Small, 2013, 9(18): 3153–3160
https://doi.org/10.1002/smll.201203205 pmid: 23606243
10 Liao J Y, Lei B X, Chen H Y, Kuang D B, Su C Y. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy & Environmental Science, 2012, 5(2): 5750–5757
https://doi.org/10.1039/C1EE02766B
11 Guo W, Xu C, Wang X, Wang S H, Pan C, Lin C, Wang Z L. Rectangular bunched rutile TiO2 nanorodarrays grown on carbon fiber for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(9): 4437–4441
https://doi.org/10.1021/ja2120585 pmid: 22300521
12 Tang Z R, Li F, Zhang Y, Fu X, Xu Y J. Composites of titanatenanotube and carbon nanotube as photocatalyst with high mineralization ratio for gas-phase degradation of volatile aromatic pollutant. Journal of Physical Chemistry C, 2011, 115(16): 7880–7886
https://doi.org/10.1021/jp1115838
13 Jiang J, Li Y, Liu J, Huang X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 2011, 3(1): 45–58
https://doi.org/10.1039/C0NR00472C pmid: 20978657
14 Wang Z L, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242–246
https://doi.org/10.1126/science.1124005 pmid: 16614215
15 Martinez L, Bernechea M, de Arquer F P G, Konstantatos G. Near IR-sensitive, non-toxic, polymer/nanocrystalsolar cells employing Bi2S3 as the electron acceptor. Advanced Energy Materials, 2011, 1(6): 1029–1035
https://doi.org/10.1002/aenm.201100441
16 Xiao G, Dong Q, Wang Y, Sui Y, Ning J, Liu Z, Tian W, Liu B, Zou G, Zou B. One-step solution synthesis of bismuth sulfide (Bi2S3) with various hierarchical architectures and their photoresponse properties. RSC Advances, 2012, 2(1): 234–240
https://doi.org/10.1039/C1RA00289A
17 Li Y, Wei F, Ma Y, Zhang H, Gao Z, Dai L, Qin G. Selected-control hydrothermal synthesis and photoresponse properties of Bi2S3micro/nanocrystals. CryEngComm, 2013, 15(33): 6611–6616
https://doi.org/10.1039/c3ce40435h
18 Konstantatos G, Levina L, Tang J, Sargent E H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Letters, 2008, 8(11): 4002–4006
https://doi.org/10.1021/nl802600z pmid: 18844425
19 Yao K, Gong W W, Hu Y F, Liang X L, Chen Q, Peng L M. Individual Bi2S3 nanowire-based room-temperature H2 sensor. Journal of Physical Chemistry C, 2008, 112(23): 8721–8724
https://doi.org/10.1021/jp8022293
20 Bao H, Li C M, Cui X, Gan Y, Song Q, Guo J. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/metal back-to-back Schottky diode. Small, 2008, 4(8): 1125–1129
https://doi.org/10.1002/smll.200800007 pmid: 18651717
21 Ma J, Liu Z, Lian J, Duan X, Kim T, Peng P, Liu X, Chen Q, Yao G, Zheng W. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. CrystEngComm, 2011, 13(8): 3072–3079
https://doi.org/10.1039/c0ce00913j
22 Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials, 2006, 5(2): 118–122
https://doi.org/10.1038/nmat1571 pmid: 16444262
23 Schricker A D, Sigman M B Jr, Korgel B A. Electrical transport, Meyer–Neldel rule and oxygen sensitivity of Bi2S3 nanowires. Nanotechnology, 2005, 16(7): S508–S513
https://doi.org/10.1088/0957-4484/16/7/027
24 Liao X H, Wang H, Zhu J J, Chen H Y. Preparation of Bi2S3 nanorods by microwave irradiation. Materials Research Bulletin, 2001, 36(13-14): 2339–2346
https://doi.org/10.1016/S0025-5408(01)00734-6
25 Tang C J, Wang G Z, Wang H Q, Zhang Y X, Li G H. Facile synthesis of Bi2S3 nanowire arrays. Materials Letters, 2008, 62(21-22): 3663–3665
https://doi.org/10.1016/j.matlet.2008.04.021
26 Tang C, Wang C, Su F, Zang C, Yang Y, Zong Z, Zhang Y. Controlled synthesis of urchin-like Bi2S3 via hydrothermal method. Solid State Sciences, 2010, 12(8): 1352–1356
https://doi.org/10.1016/j.solidstatesciences.2010.05.007
27 Lu F, Li R, Li Y, Huo N, Yang J, Li Y, Li B, Yang S, Wei Z, Li J . Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(1): 99–103
28 Andzane J, Kunakova G, Varghese J, Holmes J D, Erts D. Photoconductive properties of Bi2S3 nanowires. Journal of Applied Physics, 2015, 117(6): 064305
https://doi.org/10.1063/1.4907867
29 Wang H, Zhu J J, Zhu J M, Chen H Y. Sonochemical method for the preparation of bismuth sulfide nanorods. Journal of Physical Chemistry B, 2002, 106(15): 3848–3854
https://doi.org/10.1021/jp0135003
30 Wei F, Zhang J, Wang L, Zhang Z K. Solvothermal growth of single-crystal bismuth sulfide nanorods using bismuth particles as source material. Crystal Growth & Design, 2006, 6(8): 1942–1944
https://doi.org/10.1021/cg050456y
31 Peng X S, Meng G W, Zhang J, Zhao L X, Wang X F, Wang Y W, Zhang L D. Electrochemical fabrication of ordered Bi2S3 nanowire arrays. Journal of Physics D, Applied Physics, 2001, 34(22): 3224–3228
https://doi.org/10.1088/0022-3727/34/22/304
32 Zhang B, Ye X, Hou W, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. Journal of Physical Chemistry B, 2006, 110(18): 8978–8985
https://doi.org/10.1021/jp060769j pmid: 16671704
33 Wang Y, Chen J, Wang P, Chen L, Chen Y B, Wu L M. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. Journal of Physical Chemistry C, 2009, 113(36): 16009–16014
https://doi.org/10.1021/jp904448k
34 Kind H, Yan H, Messer B, Law M, Yang P. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158–160
https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[3] Zidong ZHANG, Juehan YANG, Fuhong MEI, Guozhen SHEN. Longitudinal twinning α-In2Se3 nanowires for UV-visible-NIR photodetectors with high sensitivity[J]. Front. Optoelectron., 2018, 11(3): 245-255.
[4] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[5] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[6] Mohammad KARIMI, Kambiz ABEDI, Mahdi ZAVVARI. InAs/GaAs far infrared quantum ring inter-subband photodetector[J]. Front Optoelec, 2014, 7(1): 84-90.
[7] Changping CHEN, Xiangliang JIN, Lizhen TANG, Hongjiao YANG, Jun LUO. Simulation analysis of combined UV/blue photodetector in CMOS process by technology computer-aided design[J]. Front Optoelec, 2014, 7(1): 69-73.
[8] Saeed OLYAEE, Mohammad SOROOSH, Mahdieh IZADPANAH. Transfer matrix modeling of avalanche photodiode[J]. Front Optoelec, 2012, 5(3): 317-321.
[9] Cao MIAO, Hai LU, Dunjun CHEN, Rong ZHANG, Youdou ZHENG. InGaN/GaN multi-quantum-well-based light-emitting and photodetective dual-functional devices[J]. Front Optoelec Chin, 2009, 2(4): 442-445.
[10] Xianjie LI, Yingbin LIU, Zhen FENG, Fan GUO, Yonglin ZHAO, Run ZHAO, Rui ZHOU, Chen LOU, Shizu ZHANG. AlGaAs/GaAs quantum well infrared photodetector focal plane array based on MOCVD technology[J]. Front Optoelec Chin, 2008, 1(3-4): 313-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed