Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (3) : 39    https://doi.org/10.1007/s12200-022-00038-z
RESEARCH ARTICLE
Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells
Wentao Fan, Qiyuan Gao, Xinyi Mei, Donglin Jia, Jingxuan Chen, Junming Qiu, Qisen Zhou, Xiaoliang Zhang()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
 Download: PDF(3822 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Formamidinium lead triiodide (FAPbI3) perovskite quantum dots (PQDs) show great advantages in photovoltaic applications due to their ideal bandgap energy, high stability and solution processability. The anti-solvent used for the post-treatment of FAPbI3 PQD solid films significantly affects the surface chemistry of the PQDs, and thus the vacancies caused by surface ligand removal inhibit the optoelectronic properties and stability of PQDs. Here, we study the effects of different anti-solvents with different polarities on FAPbI3 PQDs and select a series of organic molecules for surface passivation of PQDs. The results show that methyl acetate could effectively remove surface ligands from the PQD surface without destroying its crystal structure during the post-treatment. The benzamidine hydrochloride (PhFACl) applied as short ligands of PQDs during the post-treatment could fill the A-site and X-site vacancies of PQDs and thus improve the electronic coupling of PQDs. Finally, the PhFACl-based PQD solar cell (PQDSC) achieves a power conversion efficiency of 6.4%, compared to that of 4.63% for the conventional PQDSC. This work provides a reference for insights into the surface passivation of PQDs and the improvement in device performance of PQDSCs.

Keywords FAPbI3      Perovskite quantum dot      Antisolvent      Surface passivation      Solar cell     
Corresponding Author(s): Xiaoliang Zhang   
Issue Date: 26 October 2022
 Cite this article:   
Wentao Fan,Qiyuan Gao,Xinyi Mei, et al. Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells[J]. Front. Optoelectron., 2022, 15(3): 39.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00038-z
https://academic.hep.com.cn/foe/EN/Y2022/V15/I3/39
1 W. Hui,, L. Chao,, H. Lu,, F. Xia,, Q. Wei,, Z. Su,, T. Niu,, L. Tao,, B. Du,, D. Li,, Y. Wang,, H. Dong,, S. Zuo,, B. Li,, W. Shi,, X. Ran,, P. Li,, H. Zhang,, Z. Wu,, C. Ran,, L. Song,, G. Xing,, X. Gao,, J. Zhang,, Y. Xia,, Y. Chen,, W. Huang,: Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021)
https://doi.org/10.1126/science.abf7652
2 F. Zhang,, Z. Ma,, Z. Shi,, X. Chen,, D. Wu,, X. Li,, C. Shan,: Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy Mater. Adv. 2021, 1–38 (2021)
https://doi.org/10.34133/2021/5198145
3 J.X. Chen,, S.Y. Zheng,, D.L. Jia,, W.L. Liu,, A. Andruszkiewicz,, C.C. Qin,, M. Yu,, J.H. Liu,, E.M.J. Johansson,, X.L. Zhang,: Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. Acs Energy Lett. 6, 1970–1989 (2021)
https://doi.org/10.1021/acsenergylett.1c00475
4 S.Y. Zheng,, Y.F. Wang,, D.L. Jia,, L. Tian,, J.X. Chen,, L.W. Shan,, L.M. Dong,, X.L. Zhang,: Strong coupling of colloidal quantum dots via self-assemble passivation for efficient infrared solar cells. Adv. Mater. Interfaces 8, 2100489 (2021)
https://doi.org/10.1002/admi.202100489
5 H. Yang,, L. Gutiérrez-Arzaluz,, P. Maity,, M.A. Abdulhamid,, J. Yin,, Y. Zhou,, C. Chen,, Y. Han,, G. Szekely,, O.M. Bakr,, O.F. Mohammed,: Air-resistant lead halide perovskite nanocrystals embedded into polyimide of intrinsic microporosity. Energy Mater. Adv. 2021, 1–9 (2021)
https://doi.org/10.34133/2021/9873846
6 Y. Wang,, X. Mei,, J. Qiu,, Q. Zhou,, D. Jia,, M. Yu,, J. Liu,, X. Zhang,: Insight into the interface engineering of a SnO2/FAPbI3 perovskite using lead halide as an interlayer: a first-principles study. J. Phys. Chem. Lett. 12, 11330–11338 (2021)
https://doi.org/10.1021/acs.jpclett.1c03213
7 S. Shan,, Y. Li,, H. Wu,, T. Chen,, B. Niu,, Y. Zhang,, D. Wang,, C. Kan,, X. Yu,, L. Zuo,, H. Chen,: Manipulating the film morphology evolution toward green solvent-processed perovskite solar cells. SusMat 1, 537–544 (2021)
https://doi.org/10.1002/sus2.36
8 Y. Wang,, J. Liu,, M. Yu,, J. Zhong,, Q. Zhou,, J. Qiu,, X. Zhang,: SnO2 surface halogenation to improve photovoltaic performance of perovskite solar cells. Acta Phys.-Chim. Sin. 37, 2006030 (2021)
https://doi.org/10.3866/PKU.WHXB202006030
9 D. Zhang,, B. Fan,, L. Ying,, N. Li,, C.J. Brabec,, F. Huang,, Y. Cao,: Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1, 4–23 (2021)
https://doi.org/10.1002/sus2.10
10 G. Zou,, Z. Chen,, Z. Li,, H.-L. Yip,: Blue perovskite light-emitting diodes: opportunities and challenges. Acta Phys.-Chim. Sin. 37, 2009002 (2021)
https://doi.org/10.3866/PKU.WHXB202009002
11 X. Mei,, D. Jia,, J. Chen,, S. Zheng,, X. Zhang,: Approaching high-performance light-emitting devices upon perovskite quantum dots: advances and prospects. Nano Today 43, 101449 (2022)
https://doi.org/10.1016/j.nantod.2022.101449
12 C.H. Bi,, S.V. Kershaw,, A.L. Rogach,, J.J. Tian,: Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Adv. Funct. Mater. 29, 1902446 (2019)
https://doi.org/10.1002/adfm.201902446
13 C. Zheng,, A. Liu,, C. Bi,, J. Tian,: SCN-doped CsPbI3 for improving stability and photodetection performance of colloidal quantum dots. Acta Phys.-Chim. Sin. 37, 2007084 (2021)
https://doi.org/10.3866/PKU.WHXB202007084
14 J. Wu,, Y. Li,, J. Shi,, H. Wu,, Y. Luo,, D. Li,, Q. Meng,: UV photodetectors based on high quality CsPbCl3 film prepared by a two-step diffusion method. Acta Phys.-Chim. Sin. 37, 2004041 (2021)
https://doi.org/10.3866/PKU.WHXB202004041
15 D. Jia,, J. Chen,, X. Mei,, W. Fan,, S. Luo,, M. Yu,, J. Liu,, X. Zhang,: Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14, 4599–4609 (2021)
https://doi.org/10.1039/D1EE01463C
16 J. Chen,, D. Jia,, E.M.J. Johansson,, A. Hagfeldt,, X. Zhang,: Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224–261 (2021)
https://doi.org/10.1039/D0EE02900A
17 A. Swarnkar,, A.R. Marshall,, E.M. Sanehira,, B.D. Chernomordik,, D.T. Moore,, J.A. Christians,, T. Chakrabarti,, J.M. Luther,: Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)
https://doi.org/10.1126/science.aag2700
18 K.Q. Chen,, Q.H. Zhong,, W. Chen,, B.H. Sang,, Y.W. Wang,, T.Q. Yang,, Y.L. Liu,, Y.P. Zhang,, H. Zhang,: Short-chain ligandpassivated stable alpha-CsPbI2 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019)
https://doi.org/10.1002/adfm.201900991
19 J.W. Shi,, F.C. Li,, Y. Jin,, C. Liu,, B. Cohen-Kleinstein,, S. Yuan,, Y.Y. Li,, Z.K. Wang,, J.Y. Yuan,, W.L. Ma,: In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. Int. Ed. 59, 22230–22237 (2020)
https://doi.org/10.1002/anie.202010440
20 Y.L. Qian,, Y. Shi,, G.Y. Shi,, G.Z. Shi,, X.L. Zhang,, L. Yuan,, Q.X. Zhong,, Y. Liu,, Y. Wang,, X.F. Ling,, F.C. Li,, M.H. Cao,, S.J. Li,, Q. Zhang,, Z.K. Liu,, W.L. Ma,: The impact of precursor ratio on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 perovskite quantum dots. Sol. RRL 5, 2100090 (2021)
https://doi.org/10.1002/solr.202100090
21 E.M. Sanehira,, A.R. Marshall,, J.A. Christians,, S.P. Harvey,, P.N. Ciesielski,, L.M. Wheeler,, P. Schulz,, L.Y. Lin,, M.C. Beard,, J.M. Luther,: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017)
https://doi.org/10.1126/sciadv.aao4204
22 L.M. Wheeler,, E.M. Sanehira,, A.R. Marshall,, P. Schulz,, M. Suri,, N.C. Anderson,, J.A. Christians,, D. Nordlund,, D. Sokaras,, T. Kroll,, S.P. Harvey,, J.J. Berry,, L.Y. Lin,, J.M. Luther,: Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140, 10504–10513 (2018)
https://doi.org/10.1021/jacs.8b04984
23 L. Zhang,, C. Kang,, G. Zhang,, Z. Pan,, Z. Huang,, S. Xu,, H. Rao,, H. Liu,, S. Wu,, X. Wu,, X. Li,, Z. Zhu,, X. Zhong,, A.K.Y. Jen,: All-inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Adv. Funct. Mater. 31, 2100090 (2020)
https://doi.org/10.1002/adfm.202005930
24 Y. Wang,, J.Y. Yuan,, X.L. Zhang,, X.F. Ling,, B.W. Larson,, Q. Zhao,, Y.G. Yang,, Y. Shi,, J.M. Luther,, W.L. Ma,: Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32, 2000449 (2020)
https://doi.org/10.1002/adma.202000449
25 J.X. Chen,, D.L. Jia,, J.M. Qiu,, R.S. Zhuang,, Y. Hua,, X.L. Zhang,: Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 96, 107140 (2022)
https://doi.org/10.1016/j.nanoen.2022.107140
26 J. Yuan,, X. Ling,, D. Yang,, F. Li,, S. Zhou,, J. Shi,, Y. Qian,, J. Hu,, Y. Sun,, Y. Yang,, X. Gao,, S. Duhm,, Q. Zhang,, W. Ma,: Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule. 2, 2450–2463 (2018)
https://doi.org/10.1016/j.joule.2018.08.011
27 Q. Zhao,, A. Hazarika,, X. Chen,, S.P. Harvey,, B.W. Larson,, G.R. Teeter,, J. Liu,, T. Song,, C. Xiao,, L. Shaw,, M. Zhang,, G. Li,, M.C. Beard,, J.M. Luther,: High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nat. Commun. 10, 2842 (2019)
https://doi.org/10.1038/s41467-019-10856-z
28 K. Chen,, W. Jin,, Y. Zhang,, T. Yang,, P. Reiss,, Q. Zhong,, U. Bach,, Q. Li,, Y. Wang,, H. Zhang,, Q. Bao,, Y. Liu,: High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering. J. Am. Chem. Soc. 142, 3775–3783 (2020)
https://doi.org/10.1021/jacs.9b10700
29 L. Hu,, Q. Zhao,, S. Huang,, J. Zheng,, X. Guan,, R. Patterson,, J. Kim,, L. Shi,, C.H. Lin,, Q. Lei,, D. Chu,, W. Tao,, S. Cheong,, R.D. Tilley,, A.W.Y. Ho-Baillie,, J.M. Luther,, J. Yuan,, T. Wu,: Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021)
https://doi.org/10.1038/s41467-020-20749-1
30 M. Hao,, Y. Bai,, S. Zeiske,, L. Ren,, J. Liu,, Y. Yuan,, N. Zarrabi,, N. Cheng,, M. Ghasemi,, P. Chen,, M. Lyu,, D. He,, J.-H. Yun,, Y. Du,, Y. Wang,, S. Ding,, A. Armin,, P. Meredith,, G. Liu,, H.-M. Cheng,, L. Wang,: Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020)
https://doi.org/10.1038/s41560-019-0535-7
31 J. Xue,, J.-W. Lee,, Z. Dai,, R. Wang,, S. Nuryyeva,, M.E. Liao,, S.-Y. Chang,, L. Meng,, D. Meng,, P. Sun,, O. Lin,, M.S. Goorsky,, Y. Yang,: Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule. 2, 1866–1878 (2018)
https://doi.org/10.1016/j.joule.2018.07.018
32 J. Xue,, R. Wang,, L. Chen,, S. Nuryyeva,, T.H. Han,, T. Huang,, S. Tan,, J. Zhu,, M. Wang,, Z.K. Wang,, C. Zhang,, J.W. Lee,, Y. Yang,: A small-molecule, „charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31, e1900111 (2019)
https://doi.org/10.1002/adma.201900111
33 F. Li,, S. Zhou,, J. Yuan,, C. Qin,, Y. Yang,, J. Shi,, X. Ling,, Y. Li,, W. Ma,: Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. Acs Energy Lett. 4, 2571–2578 (2019)
https://doi.org/10.1021/acsenergylett.9b01920
34 K. Ji,, J.B. Yuan,, F.C. Li,, Y. Shi,, X.F. Ling,, X.L. Zhang,, Y.N. Zhang,, H.Y. Lu,, J.Y. Yuan,, W.L. Ma,: High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020)
https://doi.org/10.1039/D0TA02743J
35 X. Ling,, J. Yuan,, X. Zhang,, Y. Qian,, S.M. Zakeeruddin,, B.W. Larson,, Q. Zhao,, J. Shi,, J. Yang,, K. Ji,, Y. Zhang,, Y. Wang,, C. Zhang,, S. Duhm,, J.M. Luther,, M. Gratzel,, W. Ma,: Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, e2001906 (2020)
https://doi.org/10.1002/adma.202001906
36 L. Protesescu,, S. Yakunin,, S. Kumar,, J. Bar,, F. Bertolotti,, N. Masciocchi,, A. Guagliardi,, M. Grotevent,, I. Shorubalko,, M.I. Bodnarchuk,, C.J. Shih,, M.V. Kovalenko,: Dismantling the „Red Wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017)
https://doi.org/10.1021/acsnano.7b00116
37 J. Qiu,, Q. Zhou,, D. Jia,, Y. Wang,, S. Li,, X. Zhang,: Robust molecular-dipole-induced surface functionalization of inorganic perovskites for efficient solar cells. J. Mater. Chem. A 10, 1821–1830 (2022)
https://doi.org/10.1039/D1TA09756C
38 A.O. El-Ballouli,, O.M. Bakr,, O.F. Mohammeed,: Compositional, processing, and interfacial engineering of nanocrystal- and quantum- dot-based perovskite solar cells. Chem. Mater. 31, 6387–6411 (2019)
https://doi.org/10.1021/acs.chemmater.9b01268
39 A. Hazarika,, Q. Zhao,, E.A. Gaulding,, J.A. Christians,, B. Dou,, A.R. Marshall,, T. Moot,, J.J. Berry,, J.C. Johnson,, J.M. Luther,: Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of a-site cation composition. ACS Nano 12, 10327–10337 (2018)
https://doi.org/10.1021/acsnano.8b05555
40 I. Levchuk,, A. Osvet,, X. Tang,, M. Brandl,, J.D. Perea,, F. Hoegl,, G.J. Matt,, R. Hock,, M. Batentschuk,, C.J. Brabec,: Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 17, 2765–2770 (2017)
https://doi.org/10.1021/acs.nanolett.6b04781
41 H. Lu,, Y. Liu,, P. Ahlawat,, A. Mishra,, W.R. Tress,, F.T. Eickemeyer,, Y. Yang,, F. Fu,, Z. Wang,, C.E. Avalos,, B.I. Carlsen,, A. Agarwalla,, X. Zhang,, X. Li,, Y. Zhan,, S.M. Zakeeruddin,, L. Emsley,, U. Rothlisberger,, L. Zheng,, A. Hagfeldt,, M. Gratzel,: Vaporassisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science (2020)
https://doi.org/10.1126/science.abb8985
42 M.U. Rothmann,, J.S. Kim,, J. Borchert,, K.B. Lohmann,, C.M. O’Leary,, A.A. Sheader,, L. Clark,, H.J. Snaith,, M.B. Johnston,, P.D. Nellist,, L.M. Herz,: Atomic-scale microstructure of metal halide perovskite. Science 370, 548 (2020)
https://doi.org/10.1126/science.abb5940
43 D. Jia,, J. Chen,, J. Qiu,, H. Ma,, M. Yu,, J. Liu,, X. Zhang,: Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule. 6, 1632–1653 (2022)
https://doi.org/10.1016/j.joule.2022.05.007
44 M. Imran,, V. Caligiuri,, M. Wang,, L. Goldoni,, M. Prato,, R. Krahne,, L. De Trizio,, L. Manna,: Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656–2664 (2018)
https://doi.org/10.1021/jacs.7b13477
45 H. Huang,, Y. Li,, Y. Tong,, E.P. Yao,, M.W. Feil,, A.F. Richter,, M. Doblinger,, A.L. Rogach,, J. Feldmann,, L. Polavarapu,: Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: a versatile approach for their shapecontrolled synthesis. Angew. Chem. Int. Ed. 58, 16558–16562 (2019)
https://doi.org/10.1002/anie.201906862
46 X.F. Ling,, S.J. Zhou,, J.Y. Yuan,, J.W. Shi,, Y.L. Qian,, B.W. Larson,, Q. Zhao,, C.C. Qin,, F.C. Li,, G.Z. Shi,, C. Stewart,, J.X. Hu,, X.L. Zhang,, J.M. Luther,, S. Duhm,, W.L. Ma,: 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9, 1900721 (2019)
https://doi.org/10.1002/aenm.201900721
47 J. Kim,, B. Koo,, W.H. Kim,, J. Choi,, C. Choi,, S.J. Lim,, J.S. Lee,, D.H. Kim,, M.J. Ko,, Y. Kim,: Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy 66, 104130 (2019)
https://doi.org/10.1016/j.nanoen.2019.104130
48 J. Kim,, S. Cho,, F. Dinic,, J. Choi,, C. Choi,, S.M. Jeong,, J.S. Lee,, O. Voznyy,, M.J. Ko,, Y. Kim,: Hydrophobic stabilizeranchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy 75, 104985 (2020)
https://doi.org/10.1016/j.nanoen.2020.104985
49 D. Jia,, J. Chen,, M. Yu,, J. Liu,, E.M.J. Johansson,, A. Hagfeldt,, X. Zhang,: Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 16, e2001772 (2020)
https://doi.org/10.1002/smll.202001772
50 T. Liu,, J. Guo,, D. Lu,, Z. Xu,, Q. Fu,, N. Zheng,, Z. Xie,, X. Wan,, X. Zhang,, Y. Liu,, Y. Chen,: Spacer engineering using aromatic formamidinium in 2D/3D hybrid perovskites for highly efficient solar cells. ACS Nano 15, 7811–7820 (2021)
https://doi.org/10.1021/acsnano.1c02191
51 Q. Li,, Y. Dong,, G. Lv,, T. Liu,, D. Lu,, N. Zheng,, X. Dong,, Z. Xu,, Z. Xie,, Y. Liu,: Fluorinated aromatic formamidinium spacers boost efficiency of layered ruddlesden-popper perovskite solar cells. Acs Energy Lett. 6, 2072–2080 (2021)
https://doi.org/10.1021/acsenergylett.1c00620
52 Y.J. Yoon,, K.T. Lee,, T.K. Lee,, S.H. Kim,, Y.S. Shin,, B. Walker,, S.Y. Park,, J. Heo,, J. Lee,, S.K. Kwak,, G.H. Kim,, J.Y. Kim,: Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule. 2, 2105–2116 (2018)
https://doi.org/10.1016/j.joule.2018.07.012
53 M. Suri,, A. Hazarika,, B.W. Larson,, Q. Zhao,, M. Vallés-Pelarda,, T.D. Siegler,, M.K. Abney,, A.J. Ferguson,, B.A. Korgel,, J.M. Luther,: Enhanced open-circuit voltage of wide-bandgap perovskite photovoltaics by using alloyed (FA1–xCsx)Pb(I1–xBrx)3 quantum dots. Acs Energy Lett. 4, 1954–1960 (2019)
https://doi.org/10.1021/acsenergylett.9b01030
54 S. Yang,, J. Dai,, Z. Yu,, Y. Shao,, Y. Zhou,, X. Xiao,, X.C. Zeng,, J. Huang,: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)
https://doi.org/10.1021/jacs.8b13091
55 Q. Wang,, Z. Jin,, D. Chen,, D. Bai,, H. Bian,, J. Sun,, G. Zhu,, G. Wang,, S.F. Liu,: µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv Energy Mater. 8, 1800007 (2018)
https://doi.org/10.1002/aenm.201800007
56 Q. Zhou,, J. Qiu,, Y. Wang,, M. Yu,, J. Liu,, X. Zhang,: Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells. Acs Energy Lett. 6, 1596–1606 (2021)
https://doi.org/10.1021/acsenergylett.1c00291
57 D.L. Jia,, J.X. Chen,, S.Y. Zheng,, D. Phuyal,, M. Yu,, L. Tian,, J.H. Liu,, O. Karis,, H. Rensmo,, E.M.J. Johansson,, X. Zhang,: Highly stabilized quantum dot ink for efficient infrared light absorbing solar cells. Adv. Energy Mater. 9, 1902809 (2019)
https://doi.org/10.1002/aenm.201902809
[1] Xianglang Sun, Zonglong Zhu, Zhong’an Li. Recent advances in developing high-performance organic hole transporting materials for inverted perovskite solar cells[J]. Front. Optoelectron., 2022, 15(4): 46-.
[2] Masumeh Sarkhoush, Hassan Rasooli Saghai, Hadi Soofi. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications[J]. Front. Optoelectron., 2022, 15(4): 42-.
[3] Jiajia Zheng, Liuchong Fu, Yuming He, Kanghua Li, Yue Lu, Jiayou Xue, Yuxuan Liu, Chong Dong, Chao Chen, Jiang Tang. Fabrication and characterization of ZnO/Se1−xTex solar cells[J]. Front. Optoelectron., 2022, 15(3): 36-.
[4] Seyedeh Leila Mortazavifar, Mohammad Reza Salehi, Mojtaba Shahraki, Ebrahim Abiri. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays[J]. Front. Optoelectron., 2022, 15(1): 6-.
[5] Xinran LI, Yanhui LOU, Zhaokui WANG. Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations[J]. Front. Optoelectron., 2021, 14(4): 499-506.
[6] Kanghua LI, Xuetian LIN, Boxiang SONG, Rokas KONDROTAS, Chong WANG, Yue LU, Xuke YANG, Chao CHEN, Jiang TANG. Rapid thermal evaporation for cadmium selenide thin-film solar cells[J]. Front. Optoelectron., 2021, 14(4): 482-490.
[7] Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI, Hongwei HAN. Influence of precursor concentration on printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 256-264.
[8] Shaiqiang MU, Qiufeng YE, Xingwang ZHANG, Shihua HUANG, Jingbi YOU. Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 265-271.
[9] Hangkai YING, Yifan LIU, Yuxi DOU, Jibo ZHANG, Zhenli WU, Qi ZHANG, Yi-Bing CHENG, Jie ZHONG. Surfactant-assisted doctor-blading-printed FAPbBr3 films for efficient semitransparent perovskite solar cells[J]. Front. Optoelectron., 2020, 13(3): 272-281.
[10] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[11] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[12] Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
[13] Zhining WAN, Mi XU, Zhengyang FU, Da LI, Anyi MEI, Yue HU, Yaoguang RONG, Hongwei HAN. Screen printing process control for coating high throughput titanium dioxide films toward printable mesoscopic perovskite solar cells[J]. Front. Optoelectron., 2019, 12(4): 344-351.
[14] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[15] Xiaofan ZHANG, Man LIU, Weiqian KONG, Hongbo FAN. Recent advances in solar cells and photo-electrochemical water splitting by scanning electrochemical microscopy[J]. Front. Optoelectron., 2018, 11(4): 333-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed