Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (3) : 291-302    https://doi.org/10.1007/s12200-020-1045-8
RESEARCH ARTICLE
A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam
Yan ZHU, Yining MU(), Fanqi TANG, Peng DU, Hang REN
School of Science, Changchun University of Science and Technology, Changchun 130022, China
 Download: PDF(5242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Although laser pumping using electron beam (EB) has high transient power output and easy modulation based on perovskite quantum dot (PQD) film, its lasing emitting direction is the same as the pumped EB’s direction. Thus, realizing the conventional direct device structure through the film lasing mechanism is extremely difficult. Therefore, using the random lasing principle, herein, we proposed a corona modulation device structure based on PQDs random laser pumped using an EB. We discussed and stimulated the optimized designed method of the device in terms of parameters of the electronic optical device and the utilization ratio of output power and its modulation extinction ratio, respectively. According to the simulation results, this type of device structure can effectively satisfy the new random lasing mechanism in terms of high-speed and high-power modulation.

Keywords corona      modulation      perovskite quantum dot (PQD)      random laser      electron beam (EB)     
Corresponding Author(s): Yining MU   
Just Accepted Date: 16 July 2020   Online First Date: 26 August 2020    Issue Date: 27 September 2020
 Cite this article:   
Yan ZHU,Yining MU,Fanqi TANG, et al. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Front. Optoelectron., 2020, 13(3): 291-302.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1045-8
https://academic.hep.com.cn/foe/EN/Y2020/V13/I3/291
Fig.1  Crystal structure and thin film preparation process of CsPbBr3
Fig.2  Lasing experiment of perovskite quantum dot (PQD) electron beam (EB) pumping
Fig.3  Scattering effect of EB in a 300 nm thickness PQD film. (a) 3 kV energy EB. (b) 5 kV energy EB. (c) 3 kV energy EB distribution within the PQD film. (d) 5 kV energy EB distribution within the PQD film
Fig.4  Photoluminescence (PL) spectra of CsPbBr3 quantum dot thin films
Fig.5  Original EB pumping device
Fig.6  Lasing effect of PQDs EB pumping. CL, cathodoluminescence
Fig.7  Relationships between the thickness of PQD films and the external voltage
Fig.8  Corona-shaped EB device structure
Fig.9  Ring-shaped focusing chamber structure. L1 is the diameter of the focusing chamber; L2 is the length of the focusing chamber in region III; D1 and D2 determine the position of the electron source
Fig.10  Field distribution of focusing chamber. (a) Voltage scale. (b) L1 = 5 mm. (c) L1 = 15 mm. (d) L1 = 25 mm. (e) L1 = 35 mm. (f) L1 = 45 mm. (g) L1 = 50 mm
Fig.11  Field of view (FOV) matching process
Fig.12  EB’s utilization around the zero FOV
Fig.13  Electron source’s emission angle 2β on FOV matching
Fig.14  Working mechanism of modulated gate. (a) Initial model. (b) Isolation model. (c) Relay model. (d) Field scale
Fig.15  Concrete details of modulated gate
Fig.16  Influence modulated gate’s parameters on EB utilization. (a) X = 6 mm. (b) X = 8 mm. (c) X = 11 mm. (d) X = 13 mm
Fig.17  Influence modulated gate’s parameters on EB utilization. (a) X = 8 mm. (b) X = 9 mm. (c) X = 10 mm. (d) X = 11 mm. (e) X = 12 mm. (f) X = 13 mm
Fig.18  Relationship between Ubc and modulation ability
Fig.19  Static operation points for modulation
Fig.20  EB focusing process
Fig.21  EB focusing morphology
1 C Li, Z Zang, C Han, Z Hu, X Tang, J Du, Y Leng, K Sun. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nano particles for enhanced random lasing. Nano Energy, 2017, 40(8): 195–202
https://doi.org/10.1016/j.nanoen.2017.08.013
2 R Dong, Y Fang, J Chae, J Dai, Z Xiao, Q Dong, Y Yuan, A Centrone, X C Zeng, J Huang. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Advanced Materials, 2015, 27(11): 1912–1918
https://doi.org/10.1002/adma.201405116 pmid: 25605226
3 S A Veldhuis, P P Boix, N Yantara, M Li, T C Sum, N Mathews, S G Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
https://doi.org/10.1002/adma.201600669 pmid: 27214091
4 Q Zhang, Y Yin. All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Central Science, 2018, 4(6): 668–679
https://doi.org/10.1021/acscentsci.8b00201 pmid: 29974062
5 Y Wei, Z Cheng, J Lin. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48(1): 310–350
https://doi.org/10.1039/C8CS00740C pmid: 30465675
6 Q Dong, Y Fang, Y Shao, P Mulligan, J Qiu, L Cao, J Huang. Electron-hole diffusion lengths>175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
https://doi.org/10.1126/science.aaa5760 pmid: 25636799
7 S T Ha, R Su, J Xing, Q Zhang, Q Xiong. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536
https://doi.org/10.1039/C6SC04474C pmid: 28553484
8 Y Zhang, G Wu, F Liu, C Ding, Z Zou, Q Shen. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews, 2020, 49(1): 49–84
https://doi.org/10.1039/C9CS00560A pmid: 31825404
9 M S Kodaimati, C Wang, C Chapman, G C Schatz, E A Weiss. Distance-dependence of interparticle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano, 2017, 11(5): 5041–5050
https://doi.org/10.1021/acsnano.7b01778 pmid: 28398717
10 M R Bergren, P K B Palomaki, N R Neale, T E Furtak, M C Beard. Size-dependent exciton formation dynamics in colloidal silicon quantum dots. ACS Nano, 2016, 10(2): 2316–2323
https://doi.org/10.1021/acsnano.5b07073 pmid: 26811876
11 K H Lee, C Y Han, H D Kang, H Ko, C Lee, J Lee, N Myoung, S Yim, H Yang. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano, 2015, 9(11): 10941–10949
https://doi.org/10.1021/acsnano.5b05513
12 Z Xiao, C Bi, Y Shao, Q Dong, Q Wang, Y Yuan, C Wang, Y Gao, J Huang. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619–2623
https://doi.org/10.1039/C4EE01138D
13 H Guan, S Zhao, H Wang, D Yan, M Wang, Z Zang. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes. Nano Energy, 2020, 67(1): 104279
https://doi.org/10.1016/j.nanoen.2019.104279
14 C Sun, Y Zhang, C Ruan, C Yin, X Wang, Y Wang, W W Yu. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Advanced Materials, 2016, 28(45): 10088–10094
https://doi.org/10.1002/adma.201603081 pmid: 27717018
15 X Tang, Z Hu, W Chen, X Xing, Z Zang, W Hu, J Qiu, J Du, Y Leng, X Jiang, L Mai. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 2016, 28(2): 462–468
https://doi.org/10.1016/j.nanoen.2016.08.062
16 H C Wang, S Y Lin, A C Tang, B P Singh, H C Tong, C Y Chen, Y C Lee, T L Tsai, R S Liu. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition, 2016, 55(28): 7924–7929
https://doi.org/10.1002/anie.201603698 pmid: 27239980
17 I Dursun, C Shen, M R Parida, J Pan, S P Sarmah, D Priante, N Alyami, J Liu, M I Saidaminov, M S Alias, A L Abdelhady, T K Ng, O F Mohammed, B S Ooi, O M Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics, 2016, 3(7): 1150–1156
https://doi.org/10.1021/acsphotonics.6b00187
18 G Rainò, M A Becker, M I Bodnarchuk, R F Mahrt, M V Kovalenko, T Stöferle. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563(7733): 671–675
https://doi.org/10.1038/s41586-018-0683-0 pmid: 30405237
19 J Kang, L W Wang. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
https://doi.org/10.1021/acs.jpclett.6b02800 pmid: 28071911
20 K Lin, J Xing, L N Quan, F P G de Arquer, X Gong, J Lu, L Xie, W Zhao, D Zhang, C Yan, W Li, X Liu, Y Lu, J Kirman, E H Sargent, Q Xiong, Z Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
https://doi.org/10.1038/s41586-018-0575-3 pmid: 30305741
21 S Pan, S Deka, A E Amili, Q Gu, Y Fainman. Nanolasers: Second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Progress in Quantum Electronics, 2018, 59(3): 1–18
https://doi.org/10.1016/j.pquantelec.2018.05.001
22 H Fan, Y Mu, C Liu, Y Zhu, G Liu, S Wang, Y Li, P Du. Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam. Chinese Optics Letters, 2020, 18(1): 011403
https://doi.org/10.3788/COL202018.011403
23 Y Mu, T Zhang, T Chen, F Tang, J Yang, C Liu, Z Chen, Y Zhao, P Du, H Fan, Y Zhu, G Liu, P Li. Manufacturing and characterization on a three-dimensional random resonator of porous silicon/TiO2 nanowires for continuous light pumping lasing of perovskite quantum dots. Nano, 2020, 15(02): 2050016
https://doi.org/10.1142/S1793292020500162
24 P Du, Y Mu, H, Fan H, Zhu Y, Li Y, Idelfonso M. Ren Transient luminescence characteristics of random laser emission based on electron beam pumping perovskite nanocrystals. Acta Photonica Sinica, 2020, 49(04): 146–152
25 D Yan, T Shi, Z Zang, T Zhou, Z Liu, Z Zhang, J Du, Y Leng, X Tang. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 2019, 23(15): 1901173
https://doi.org/10.1002/smll.201901173
26 H Wang, P Zhang, Z Zang. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters, 2020, 116(16): 162103
https://doi.org/10.1063/5.0005464
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Tianliang WANG, Xiaoying LIU. A novel modulation format identification based on amplitude histogram space[J]. Front. Optoelectron., 2019, 12(2): 190-196.
[3] Juhao LI, Zhongying WU, Dawei GE, Jinglong ZHU, Yu TIAN, Yichi ZHANG, Jinyi YU, Zhengbin LI, Zhangyuan CHEN, Yongqi HE. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Front. Optoelectron., 2019, 12(1): 31-40.
[4] Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications[J]. Front. Optoelectron., 2017, 10(3): 211-238.
[5] Liu YANG, Fengguang LUO. Generation and transmission analysis of 4-ary frequency shift keying based on dual-parallel Mach-Zehnder modulator[J]. Front. Optoelectron., 2017, 10(2): 160-165.
[6] Liu YANG,Fengguang LUO. Novel frequency shift keying modulation based on fiber Bragg gratings and intensity modulators[J]. Front. Optoelectron., 2016, 9(4): 616-620.
[7] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[8] Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
[9] Xiaoping ZHENG,Shangyuan LI,Hanyi ZHANG,Bingkun ZHOU. Researches in microwave photonics based packages for millimeter wave system with wide bandwidth and large dynamic range[J]. Front. Optoelectron., 2016, 9(2): 186-193.
[10] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[11] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[12] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[13] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[14] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[15] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed