|
|
Recent advances in microwave photonics |
Ming LI( ),Ninghua ZHU( ) |
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
1 |
Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330
https://doi.org/10.1038/nphoton.2007.89
|
2 |
Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335
https://doi.org/10.1109/JLT.2008.2009551
|
3 |
Waterhouse R, Novack D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microwave Magazine, 2015, 16(8): 84–92
https://doi.org/10.1109/MMM.2015.2441593
|
4 |
Iezekiel S, Burla M, Klamkin J, Marpaung D, Capmany J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microwave Magazine, 2015, 16(8): 28–45
https://doi.org/10.1109/MMM.2015.2442932
|
5 |
Ghelfi P, Laghezza F, Scotti F, Serafino G, Pinna S, Onori D, Lazzeri E, Bogoni A. Photonics in radar systems: RF integration for state-of-the-art functionality. IEEE Microwave Magazine, 2015, 16(8): 74–83
https://doi.org/10.1109/MMM.2015.2441591
|
6 |
Capmany J, Li G, Lim C, Yao J. Microwave photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867
https://doi.org/10.1364/OE.21.022862
pmid: 24104173
|
7 |
Marpaung D, Roeloffzen C, Heideman R, Leinse A, Sales S, Capmany J. Integrated microwave photonics. Laser & Photonics Reviews, 2013, 7(4): 506–538
https://doi.org/10.1002/lpor.201200032
|
8 |
Xie L, Man J W, Wang B J, Liu Y, Wang X, Yuan H Q, Zhao L J, Zhu H L, Zhu N H, Wang W. 24-GHz directly modulated DFB laser modules for analog applications. IEEE Photonics Technology Letters, 2012, 24(5): 407–409
https://doi.org/10.1109/LPT.2011.2179026
|
9 |
Li S, Zheng X, Zhang H, Zhou B. Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters, 2011, 36(4): 546–548
https://doi.org/10.1364/OL.36.000546
pmid: 21326451
|
10 |
Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660
https://doi.org/10.1007/s11434-014-0442-z
|
11 |
Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radio-frequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621
https://doi.org/10.1364/OL.40.002618
pmid: 26030572
|
12 |
Deng Y, Li M, Tang J, Sun S, Huang N, Zhu N. Widely tunable single-passband microwave photonic filter based on DFB-SOA-assisted optical carrier recovery. IEEE Photonics Journal, 2015, 7(5): 5501108-1–5501108-8
https://doi.org/10.1109/JPHOT.2015.2475612
|
13 |
Zhu N H, Zhang H G, Man J W, Zhu H L, Ke J H, Liu Y, Wang X, Yuan H Q, Xie L, Wang W. Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection. Optics Express, 2009, 17(24): 22114–22123
https://doi.org/10.1364/OE.17.022114
pmid: 19997458
|
14 |
Pan B, Lu D, Sun Y, Yu L, Zhang L, Zhao L. Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser. Optics Letters, 2014, 39(22): 6395–6398
https://doi.org/10.1364/OL.39.006395
pmid: 25490477
|
15 |
Lu D, Pan B, Chen H, Zhao L. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. Optics Letters, 2015, 40(18): 4340–4343
https://doi.org/10.1364/OL.40.004340
pmid: 26371931
|
16 |
Zou L, Huang Y, Lv X, Liu B, Long H, Yang Y, Xiao J, Du Y. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing. Photonics Research, 2014, 2(6): 177–181
https://doi.org/10.1364/PRJ.2.000177
|
17 |
Zou L, Liu B, Lv X, Yang Y, Xiao J, Huang Y. Integrated semiconductor twin-microdisk laser under mutually optical injection. Applied Physics Letters, 2015, 106(19): 191107-1–191107-4
https://doi.org/10.1063/1.4921098
|
18 |
Yu H, Chen M, Guo Q, Hoekman M, Chen H, Leinse A, Heideman R G, Yang S, Xie S. A full-band RF photonic receiver based on the integrated ultra-high Q bandpass filter. In: Proceedings of Optical Fiber Communication Conference and Exhibition. 2015, 1–3
|
19 |
Yu H, Chen M, Guo Q, Hoekman M, Chen H, Leinse A, Heideman R G, Mateman R, Yang S, Xie S. All-optical full-band RF receiver based on an integrated ultra-high-Q bandpass filter. Journal of Lightwave Technology, 2016, 34(2): 701–706
https://doi.org/10.1109/JLT.2015.2458432
|
20 |
Shi T, Xiong B, Sun C, Luo Y. Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth. IEEE Photonics Technology Letters, 2013, 25(2): 136–139
https://doi.org/10.1109/LPT.2012.2229703
|
21 |
Huang J, Sun C, Song Y, Xiong B, Luo Y. Influence of master laser's lineshape on the optically generated microwave carrier by injection locking. Applied Physics Express, 2009, 2(7): 072502-1–072502-3
https://doi.org/10.1143/APEX.2.072502
|
22 |
Long Y, Wang J. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Optics Express, 2015, 23(14): 17739–17750
https://doi.org/10.1364/OE.23.017739
pmid: 26191836
|
23 |
Dong J, Liu L, Gao D, Yu Y, Zheng A, Yang T, Zhang X. Compact notch microwave photonic filters using on-chip integrated microring resonators. IEEE Photonics Journal, 2013, 5(2): 5500307-1–5500307-8
https://doi.org/10.1109/JPHOT.2013.2245883
|
24 |
Xie J, Zhou L, Li Z, Wang J, Chen J. Seven-bit reconfigurable optical true time delay line based on silicon integration. Optics Express, 2014, 22(19): 22707–22715
https://doi.org/10.1364/OE.22.022707
pmid: 25321740
|
25 |
Wu J, Peng J, Liu B, Pan T, Zhou H, Mao J, Yang Y, Qiu C, Su Y. Passive silicon photonic devices for microwave photonic signal processing. Optics Communications, 2015, doi:10.1016/j.optcom.2015.07.045
|
26 |
Wu X M, Man J W, Xie L, Liu Y, Qi X Q, Wang L X, Liu J G, Zhu N H. Novel method for frequency response measurement of optoelectronic devices. IEEE Photonics Technology Letters, 2012, 24(7): 575–577
https://doi.org/10.1109/LPT.2012.2183122
|
27 |
Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne. Optics Letters, 2015, 40(12): 2854–2857
https://doi.org/10.1364/OL.40.002854
pmid: 26076279
|
28 |
Wang H, Zhang S, Zou X, Zhang Y, Lu R, Zhang Z, Liu Y. Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing. Optical Engineering, 2016, 55(3): 031109-1–031109-6
https://doi.org/10.1117/1.OE.55.3.031109
|
29 |
Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Self-calibrating measurement of high-speed electro-optic phase modulators based on two-tone modulation. Optics Letters, 2014, 39(12): 3504–3507
https://doi.org/10.1364/OL.39.003504
pmid: 24978522
|
30 |
Zhang S, Wang H, Zou X, Zhang Y, Lu R, Liu Y. Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning. IEEE Photonics Journal, 2014, 6(4): 5501008-1–5501008-8
https://doi.org/10.1109/JPHOT.2014.2343991
|
31 |
Zhang S, Wang H, Zou X, Zhang Y, Lu R, Li H, Liu Y. Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors. IEEE Photonics Technology Letters, 2015, 27(9): 1014–1017
https://doi.org/10.1109/LPT.2015.2405253
|
32 |
Li S, Zheng X, Zhang H, Zhou B. Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation. Optics Letters, 2011, 36(4): 546–548
https://doi.org/10.1364/OL.36.000546
pmid: 21326451
|
33 |
Zheng X, Zhang G, Li S, Zhang H, Zhou B. All-optical signal processing for linearity enhancement of Mach-Zehnder modulators. Chinese Science Bulletin, 2014, 59(22): 2655–2660
https://doi.org/10.1007/s11434-014-0442-z
|
34 |
Zhang G, Zheng X, Li S, Zhang H, Zhou B. Postcompensation for nonlinearity of Mach-Zehnder modulator in radio-over-fiber system based on second-order optical sideband processing. Optics Letters, 2012, 37(5): 806–808
https://doi.org/10.1364/OL.37.000806
pmid: 22378400
|
35 |
Zhang G, Li S, Zheng X, Zhang H, Zhou B, Xiang P. Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links. Optics Express, 2012, 20(15): 17214–17219
https://doi.org/10.1364/OE.20.017214
|
36 |
Zhang G, Zheng X, Li S.Millimeter-wave over fiber transmitter with subcarrier upconversion and nonlinear compensation. In: Proceedings of Asia-Pacific Microwave Photonics Conference, 2012
|
37 |
Song Y, Li S, Zheng X, Zhang H, Zhou B. True time-delay line with high resolution and wide range employing dispersion and optical spectrum processing. Optics Letters, 2013, 38(17): 3245–3248
https://doi.org/10.1364/OL.38.003245
pmid: 23988925
|
38 |
Li L, Zhang G, Zheng X, Li S, Zhang H, Zhou B. Suppression for dispersion induced phase noise of an optically generated millimeter wave employing optical spectrum processing. Optics Letters, 2012, 37(19): 3987–3989
https://doi.org/10.1364/OL.37.003987
pmid: 23027254
|
39 |
Zhou X, Zheng X, Wen H, Zhang H, Zhou B. Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system. Optics Express, 2011, 19(26): B391–B398
https://doi.org/10.1364/OE.19.00B391
pmid: 22274047
|
40 |
Xue X, Zheng X, Zhang H, Zhou B. Widely tunable single-bandpass microwave photonic filter employing a non-sliced broadband optical source. Optics Express, 2011, 19(19): 18423–18429
https://doi.org/10.1364/OE.19.018423
pmid: 21935210
|
41 |
Xue X, Zheng X, Zhang H, Zhou B. Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses. Optics Express, 2012, 20(24): 26929–26934
https://doi.org/10.1364/OE.20.026929
pmid: 23187547
|
42 |
Yang J, Chan E H W, Wang X, Feng X, Guan B. Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor. Optics Express, 2015, 23(9): 12100–12110
https://doi.org/10.1364/OE.23.012100
pmid: 25969298
|
43 |
Liu J, Guo N, Li Z, Yu C, Lu C. Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops. Optics Letters, 2013, 38(21): 4304–4307
https://doi.org/10.1364/OL.38.004304
pmid: 24177079
|
44 |
Xin X, Zhang L, Liu B, Yu J. Dynamic l-OFDMA with selective multicast overlaid. Optics Express, 2011, 19(8): 7847–7855
https://doi.org/10.1364/OE.19.007847
pmid: 21503096
|
45 |
Zhang L, Xin X, Liu B, Zhao K, Yu C. A novel WDM-OFDM-PON architecture with centralized lightwave and PolSK-assisted multicast overlay. In: Proceedings of National Fiber Optic Engineers Conference, Optical Society of America. 2010, JThA25
|
46 |
Liu B, Xin X, Zhang L, Yu J. 109.92-Gb/s WDM-OFDMA uni-PON with dynamic resource allocation and variable rate access. Optics Express, 2012, 20(10): 10552–10561
https://doi.org/10.1364/OE.20.010552
pmid: 22565681
|
47 |
Zhang L, Xin X, Liu B, Wang Y, Yu J, Yu C. OFDM modulated WDM-ROF system based on PCF-supercontinuum. Optics Express, 2010, 18(14): 15003–15008
https://doi.org/10.1364/OE.18.015003
pmid: 20639986
|
48 |
Wang X, Liu Z, Wang S, Sun D, Dong Y, Hu W. Photonic radio-frequency dissemination via optical fiber with high-phase stability. Optics Letters, 2015, 40(11): 2618–2621
https://doi.org/10.1364/OL.40.002618
pmid: 26030572
|
49 |
Sun D, Dong Y, Shi H, Xia Z, Liu Z, Wang S, Xie W, Hu W. Distribution of high-stability 100.04 GHz millimeter wave signal over 60 km optical fiber with fast phase-error-correcting capability. Optics Letters, 2014, 39(10): 2849–2852
https://doi.org/10.1364/OL.39.002849
pmid: 24978219
|
50 |
Sun D, Dong Y, Yi L, Wang S, Shi H, Xia Z, Xie W, Hu W. Photonic generation of millimeter and terahertz waves with high phase stability. Optics Letters, 2014, 39(6): 1493–1496
https://doi.org/10.1364/OL.39.001493
pmid: 24690821
|
51 |
Wang S, Sun D, Dong Y, Xie W, Shi H, Yi L, Hu W. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system. Optics Letters, 2014, 39(4): 888–891
https://doi.org/10.1364/OL.39.000888
pmid: 24562233
|
52 |
Feng D, Xie H, Chen G, Qian L, Sun J. Simultaneous generation of a frequency-multiplied and phase-shifted microwave signal with large tunability. Optics Express, 2014, 22(15): 18372–18378
https://doi.org/10.1364/OE.22.018372
pmid: 25089456
|
53 |
Feng D, Sun J, Xie H. Control of the optical carrier to sideband ratio in optical double/single sideband modulation by the phase variation of RF signals. Optics Communications, 2015, 353: 30–34
https://doi.org/10.1016/j.optcom.2015.05.004
|
54 |
Feng D, Xie H, Qian L, Bai Q, Sun J. Photonic approach for microwave frequency measurement with adjustable measurement range and resolution using birefringence effect in highly non-linear fiber. Optics Express, 2015, 23(13): 17613–17621
https://doi.org/10.1364/OE.23.017613
pmid: 26191769
|
55 |
Chi H, Mei Y, Chen Y, Wang D, Zheng S, Jin X, Zhang X. Microwave spectral analysis based on photonic compressive sampling with random demodulation. Optics Letters, 2012, 37(22): 4636–4638
https://doi.org/10.1364/OL.37.004636
pmid: 23164863
|
56 |
Chen Y, Yu X, Chi H, Jin X, Zhang X, Zheng S, Galili M. Compressive sensing in a photonic link with optical integration. Optics Letters, 2014, 39(8): 2222–2224
https://doi.org/10.1364/OL.39.002222
pmid: 24978956
|
57 |
Chen Y, Yu X, Chi H, Zheng S, Zhang X, Jin X, Galili M. Compressive sensing with a microwave photonic filter. Optics Communications, 2015, 338: 428–432
https://doi.org/10.1016/j.optcom.2014.11.012
|
58 |
Zhu Z, Chi H, Zheng S, Jin T, Jin X, Zhang X. Analysis of compressive sensing with optical mixing using a spatial light modulator. Applied Optics, 2015, 54(8): 1894–1899
https://doi.org/10.1364/AO.54.001894
pmid: 25968363
|
59 |
Chen Y, Ding Y, Zhu Z, Chi H, Zheng S, Zhang X, Jin X, Galili M, Yu X. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter. Optics Communications, 2015, doi: 10.1016/j.optcom.2015.06.080
|
60 |
Chi H, Chen Y, Mei Y, Jin X, Zheng S, Zhang X. Microwave spectrum sensing based on photonic time stretch and compressive sampling. Optics Letters, 2013, 38(2): 136–138
https://doi.org/10.1364/OL.38.000136
pmid: 23454940
|
61 |
Chen Y, Chi H, Jin T, Zheng S, Jin X, Zhang X. Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing. Journal of Lightwave Technology, 2013, 31(21): 3395–3401
https://doi.org/10.1109/JLT.2013.2282088
|
62 |
Yang X, Xu K, Yin J, Dai Y, Yin F, Li J, Lu H, Liu T, Ji Y. Optical frequency comb based multi-band microwave frequency conversion for satellite applications. Optics Express, 2014, 22(1): 869–877
https://doi.org/10.1364/OE.22.000869
pmid: 24515046
|
63 |
Xu K, Wang R, Dai Y, Yin F, Li J, Ji Y, Lin J. Microwave photonics: radio-over-fiber links, systems, and applications. Photonics Research, 2014, 2(4): B54–B63
https://doi.org/10.1364/PRJ.2.000B54
|
64 |
Yan J, Xia Z, Zhang S, Bai M, Zheng Z. A flexible waveforms generator based on a single dual-parallel Mach-Zehnder modulator. Optics Communications, 2015, 334: 31–34
https://doi.org/10.1016/j.optcom.2014.08.005
|
65 |
Fang X, Bai M, Ye X, Miao J, Zheng Z. Ultra-broadband microwave frequency down-conversion based on optical frequency comb. Optics Express, 2015, 23(13): 17111–17119
https://doi.org/10.1364/OE.23.017111
pmid: 26191719
|
66 |
Zhao X, Zheng Z, Liu L, Wang Q, Chen H, Liu J. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Optics Express, 2012, 20(23): 25584–25589
https://doi.org/10.1364/OE.20.025584
pmid: 23187376
|
67 |
Wei W, Yi L, Jaouën Y, Hu W. Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber. Optics Express, 2014, 22(19): 23249–23260
https://doi.org/10.1364/OE.22.023249
pmid: 25321794
|
68 |
Wei W, Yi L, Jaouën Y, Morvan M, Hu W. Brillouin rectangular optical filter with improved selectivity and noise performance. IEEE Photonics Technology Letters, 2015, 27(15): 1593–1596
https://doi.org/10.1109/LPT.2015.2432115
|
69 |
Yi L, Wei W, Jaouen Y, Hu W. Ideal rectangular microwave photonic filter with high selectivity based on stimulated Brillouin scattering. In: Proceedings of Optical Fiber Communication Conference, Optical Society of America. 2015, Tu3F.5
|
70 |
Yi L, Wei W, Jaouen Y, Shi M, Han B, Morvan M, Hu W. Polarization-independent rectangular microwave photonic filter based on stimulated brillouin scattering. Journal of Lightwave Technology, 2016, 34(2): 669–675
https://doi.org/10.1109/JLT.2015.2475297
|
71 |
Yi L, Wei W, Hu W. Design and performance evaluation of narrowband rectangula optical filter based on stimulated Brillouin scattering in fiber. In: Proceedings of International Conference on Optical Communications and Networks. 2014, 1–2
|
72 |
Yu J, Li X, Chi N. Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system. Optics Express, 2013, 21(19): 22885–22904
https://doi.org/10.1364/OE.21.022885
pmid: 24104175
|
73 |
Li X, Dong Z, Yu J, Chi N, Shao Y, Chang G K. Fiber-wireless transmission system of 108 Gb/s data over 80 km fiber and 2×2 multiple-input multiple-output wireless links at 100 GHz W-band frequency. Optics Letters, 2012, 37(24): 5106–5108
https://doi.org/10.1364/OL.37.005106
pmid: 23258020
|
74 |
Li X, Yu J, Zhang J, Dong Z, Li F, Chi N. A 400G optical wireless integration delivery system. Optics Express, 2013, 21(16): 18812–18819
https://doi.org/10.1364/OE.21.018812
pmid: 23938796
|
75 |
Yu J, Li X, Zhang J, Xiao J. 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and antenna polarization multiplexing. In: Proceedings of European Conference on Optical Communication. 2014, 1–3
|
76 |
Xiao J, Yu J, Li X, Xu Y, Zhang Z, Chen L. 40-Gb/s PDM-QPSK signal transmission over 160-m wireless distance at W-band. Optics Letters, 2015, 40(6): 998–1001
https://doi.org/10.1364/OL.40.000998
pmid: 25768166
|
77 |
Li X, Yu J, Zhang Z, Xu Y. Field trial of 80-Gb/s PDM-QPSK signal delivery over 300-m wireless distance with MIMO and antenna polarization multiplexing at W-band. In: Proceedings of Optical Fiber Communication Conference, Optical Society of America. 2015, Th5A.5
|
78 |
Li X, Yu J, Xiao J. 1003 (100 Gb/s×100 m×100 GHz) optical wireless system. In: Proceedings of European Conference on Optical Communication. 2015, 1–3
|
79 |
Román J E, Frankel M Y, Esman R D. Spectral characterization of fiber gratings with high resolution. Optics Letters, 1998, 23(12): 939–941
https://doi.org/10.1364/OL.23.000939
pmid: 18087390
|
80 |
Tang Z, Pan S, Yao J. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Optics Express, 2012, 20(6): 6555–6560
https://doi.org/10.1364/OE.20.006555
pmid: 22418538
|
81 |
Pan S, Zhu D, Liu S, Xu K, Dai Y, Wang T, Liu J, Zhu N, Xue Y, Liu N. Satellite payloads pay off. IEEE Microwave Magazine, 2015, 16(8): 61–73
https://doi.org/10.1109/MMM.2015.2441619
|
82 |
Fu J, Chen X, Pan S. A fiber-distributed multistatic ultra-wideband radar. In: Proceedings of International Conference on Optical Communications and Networks (ICOCN). 2015, 1–3
|
83 |
Zheng J, Zhang M, Wang A, Wang Y. Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback. Optics Letters, 2010, 35(11): 1734–1736
https://doi.org/10.1364/OL.35.001734
pmid: 20517398
|
84 |
Zhang M, Liu T, Wang A, Zheng J, Meng L, Zhang Z, Wang Y. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters, 2011, 36(6): 1008–1010
https://doi.org/10.1364/OL.36.001008
pmid: 21403758
|
85 |
Zhang M, Ji Y, Zhang Y,Wu Y, Xu H, Xu W. Remote radar based on chaos generation and radio over fiber. IEEE Photonics Journal, 2014, 6(5): 7902412-1–7902412-12
|
86 |
Ji Y, Zhang M, Wang Y, Wang P, Wang A, Wu Y, Xu H, Zhang Y. Microwave-photonic sensor for remote water-level monitoring based on chaotic laser. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24(03): 1450032-1–1450032-7
https://doi.org/10.1142/S0218127414500321
|
87 |
Han X, Wang L, Wang Y, Zou P, Gu Y, Teng J, Wang J, Jian X, Morthier G, Zhao M. UV-soft imprinted tunable polymer waveguide ring resonator for microwave photonic filtering. Journal of Lightwave Technology, 2014, 32(20): 3924–3932
https://doi.org/10.1109/JLT.2014.2310496
|
88 |
Li W, Wang W T, Sun W H, Wang W Y, Zhu N H. Stable radio-frequency phase distribution over optical fiber by phase-drift auto-cancellation. Optics Letters, 2014, 39(15): 4294–4296
https://doi.org/10.1364/OL.39.004294
pmid: 25078160
|
89 |
Li W, Sun W H, Wang W T, Wang L X, Liu J G, Zhu N H. Reduction of measurement error of optical vector network analyzer based on DPMZM. IEEE Photonics Technology Letters, 2014, 26(9): 866–869
https://doi.org/10.1109/LPT.2014.2308523
|
90 |
Li W, Zhu N H, Wang L X. Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution. Optics Letters, 2012, 37(2): 166–168
https://doi.org/10.1364/OL.37.000166
pmid: 22854455
|
91 |
Venema L. Photonic technologies. Nature, 2003, 424(6950): 809
https://doi.org/10.1038/424809a
|
92 |
Azaña J, Madsen C K, Takiguchi K, Cincontti G. Special issue on “optical signal processing”. IEEE/OSA Journal Ligthwave Technology, 2006, 24(7): 2484–2767
|
93 |
Ngo N Q, Yu S F, Tjin S C, Kam C H. A new theoretical basis of higher-derivative optical differentiators. Optics Communications, 2004, 230(1-3): 115–129
https://doi.org/10.1016/j.optcom.2003.11.048
|
94 |
Azaña J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics Journal, 2010, 2(3): 359–386
https://doi.org/10.1109/JPHOT.2010.2047941
|
95 |
Slavík R, Park Y, Kulishov M, Morandotti R, Azaña J. Ultrafast all-optical differentiators. Optics Express, 2006, 14(22): 10699–10707
https://doi.org/10.1364/OE.14.010699
pmid: 19529477
|
96 |
Park Y, Azaña J, Slavík R. Ultrafast all-optical first- and higher-order differentiators based on interferometers. Optics Letters, 2007, 32(6): 710–712
https://doi.org/10.1364/OL.32.000710
pmid: 17308610
|
97 |
Ashrafi R, Li M, Azaña J. Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators. IEEE Photonics Journal, 2013, 5(2): 7100311-1–7100311-12
https://doi.org/10.1109/JPHOT.2013.2256117
|
98 |
Li M, Janner D, Yao J, Pruneri V. Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Optics Express, 2009, 17(22): 19798–19807
https://doi.org/10.1364/OE.17.019798
pmid: 19997201
|
99 |
Li M, Jeong H S, Azaña J, Ahn T J. 25-terahertz-bandwidth all-optical temporal differentiator. Optics Express, 2012, 20(27): 28273–28280
https://doi.org/10.1364/OE.20.028273
pmid: 23263061
|
100 |
Li M, Yao J. Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating. Journal of Lightwave Technology, 2011, 29(17): 2506–2511
https://doi.org/10.1109/JLT.2011.2159827
|
101 |
Li M, Shao L, Albert J, Yao J. Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating. IEEE Photonics Technology Letters, 2011, 23(4): 251–253
https://doi.org/10.1109/LPT.2010.2098475
|
102 |
Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(3): 29-1–29-5
https://doi.org/10.1038/ncomms1028
pmid: 20975692
|
103 |
Azaña J. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator. Optics Letters, 2008, 33(1): 4–6
https://doi.org/10.1364/OL.33.000004
pmid: 18157239
|
104 |
Slavík R, Park Y, Ayotte N, Doucet S, Ahn T J, LaRochelle S, Azaña J. Photonic temporal integrator for all-optical computing. Optics Express, 2008, 16(22): 18202–18214
https://doi.org/10.1364/OE.16.018202
pmid: 18958098
|
105 |
Malacarne A, Ashrafi R, Li M, LaRochelle S, Yao J, Azaña J. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. Optics Letters, 2012, 37(8): 1355–1357
https://doi.org/10.1364/OL.37.001355
pmid: 22513684
|
106 |
Li M, Yao J. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2012, 24(15): 1319–1321
https://doi.org/10.1109/LPT.2012.2202316
|
107 |
Li M, Yao J. All-optical short-time fourier transform based on a temporal pulse-shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 2011, 23(20): 1439–1441
https://doi.org/10.1109/LPT.2011.2162624
|
108 |
Li M, Yao J. Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating. IEEE Photonics Technology Letters, 2010, 22(21): 1559–1561
https://doi.org/10.1109/LPT.2010.2066964
|
109 |
Li M, Yao J. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. Optics Letters, 2010, 35(2): 223–225
https://doi.org/10.1364/OL.35.000223
pmid: 20081975
|
110 |
Ashrafi R, Li M, LaRochelle S, Azaña J. Superluminal space-to-time mapping in grating-assisted co-directional couplers. Optics Express, 2013, 21(5): 6249–6256
https://doi.org/10.1364/OE.21.006249
pmid: 23482194
|
111 |
Ashrafi R, Li M, Belhadj N, Dastmalchi M, LaRochelle S, Azaña J. Experimental demonstration of superluminal space-to-time mapping in long period gratings. Optics Letters, 2013, 38(9): 1419–1421
https://doi.org/10.1364/OL.38.001419
pmid: 23632504
|
112 |
Ashrafi R, Li M, Azaña J. Tsymbol/s optical coding based on long-period gratings. IEEE Photonics Technology Letters, 2013, 25(10): 910–913
https://doi.org/10.1109/LPT.2013.2255034
|
113 |
Fernández-Ruiz M R, Li M, Dastmalchi M, Carballar A, LaRochelle S, Azaña J. Picosecond optical signal processing based on transmissive fiber Bragg gratings. Optics Letters, 2013, 38(8): 1247–1249
https://doi.org/10.1364/OL.38.001247
pmid: 23595447
|
114 |
Li M, Dumais P, Ashrafi R, Bazargani H P, Quelene J, Callender C, Azaña J. Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 2012, 24(16): 1387–1389
https://doi.org/10.1109/LPT.2012.2203335
|
115 |
Li M, Li Z, Yao J. Photonic generation of precisely π phase-shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters, 2012, 24(22): 2001–2004
https://doi.org/10.1109/LPT.2012.2217486
|
116 |
Li Z, Li M, Chi H, Zhang X, Yao J. Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating. IEEE Microwave and Wireless Components Letters, 2011, 21(12): 694–696
https://doi.org/10.1109/LMWC.2011.2170673
|
117 |
Li M, Yao J. Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically pumped linearly chirped fiber Bragg grating. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3531–3537
https://doi.org/10.1109/TMTT.2011.2169078
|
118 |
Li M, Han Y, Pan S,Yao J. Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a fiber-based temporal pulse shaping system. IEEE Photonics Technology Letters, 2011, 23(11): 715–717
https://doi.org/10.1109/LPT.2011.2132122
|
119 |
Li M, Shao L, Albert J, Yao J. Tilted fiber Bragg grating for chirped microwave waveform generation. IEEE Photonics Technology Letters, 2011, 23(5): 314–316
https://doi.org/10.1109/LPT.2010.2102013
|
120 |
Li M, Wang C, Li W, Yao J. An unbalanced temporal pulse-shaping system for chirped microwave waveform generation. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 2968–2975
https://doi.org/10.1109/TMTT.2010.2079070
|
121 |
Wang C, Li M, Yao J. Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system. IEEE Photonics Technology Letters, 2010, 22(17): 1285–1287
https://doi.org/10.1109/LPT.2010.2053351
|
122 |
Weiner A M, Heritage J P, Kirschner E M. High-resolution femtosecond pulse shaping. Journal of the Optical Society of America B, 1988, 5(8): 1563–1572
https://doi.org/10.1364/JOSAB.5.001563
|
123 |
Lepetit L, Chériaux G, Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 1995, 12(12): 2467–2474
https://doi.org/10.1364/JOSAB.12.002467
|
124 |
Liu W, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M, Coldren L A, Yao J. A fully reconfigurable photonic integrated signal processor. Nature Photonics, 2016: 190–195
https://doi.org/10.1038/nphoton.2015.281
|
125 |
Li M, Deng Y, Tang J, Sun S, Yao J, Azaña J, Zhu N. Reconfigurable optical signal processing based on a distributed feedback semiconductor optical amplifier. Scientific Reports, 2016, 6: 19985-1–19985-9
https://doi.org/10.1038/srep19985
pmid: 26813252
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|