Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 341-345    https://doi.org/10.1007/s12200-016-0628-x
RESEARCH ARTICLE
40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier
Michael J. CONNELLY1(),Lukasz KRZCZANOWICZ1,Pascal MOREL2,Ammar SHARAIHA2,Francois LELARGE3,Romain BRENOT3,Siddharth JOSHI3,Sophie BARBET3
1. Optical Communications Research Group, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
2. Lab-STICC, UMR CNRS 6285, École Nationale d’Ingénieurs de Brest CS 73862, 29238 Brest Cedex 3, France
3. Alcatel Thales III–V Laboratory, Route Departementale, 128, 91767 Palaiseau, France
 Download: PDF(346 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber nonlinearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four-wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.

Keywords differential quadrature phase shift keying (DQPSK)      phase modulation      quantum-dash      semiconductor optical amplifier (SOA)      four-wave mixing (FWM)      wavelength conversion     
Corresponding Author(s): Michael J. CONNELLY   
Just Accepted Date: 19 August 2016   Online First Date: 06 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL, et al. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0628-x
https://academic.hep.com.cn/foe/EN/Y2016/V9/I3/341
Fig.1  Dash-in-a-barrier structure, showing six stack layers of InAs QDashes in InGaAsP barriers
Fig.2  Unsaturated ASE spectra and polarization dependent gain characteristics (at 1530 nm) for a bias current of 500 mA. The spectral resolution is 1 nm
Fig.3  Continuous wave (CW) FWM efficiency versus pump-probe detuning for input probe and pump powers of - 7 and - 4 dBm respectively
Fig.4  Experimental setup. PC, polarization controller; PPG, pulse pattern generator; OSA, optical spectrum analyzer; BPD, balanced photodetector; DCA, digital communications analyzer
Fig.5  Eye diagrams of input (left) and converted (right) signals for probe power of: (a) - 6 dBm; (b) - 10 dBm; (c) - 15 dBm; (d) - 20 dBm. The detuning is 1 nm. The horizontal scale is 8.3 ps/div
Fig.6  Converted signal Q factor and power for a detuning of 1 nm
Fig.7  Converted signal Q factor and FWM efficiency vs. detuning range
Fig.8  Eye diagrams for: (a) input probe and (b)−(f) wavelength converted signals for various positive detunings. The horizontal scale is 8.3 ps/div
1 Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1): 115–130
https://doi.org/10.1109/JLT.2004.840357
2 Cho P S, Achiam Y, Levyyurista G, Margalit M, Gross Y, Khurgin J B. Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals. In: Proceedings of Optical Fiber Communication Conference (OFC), 2004, 1: 211–212
3 Wang J, Kahn J M. Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection. Journal of Lightwave Technology, 2004, 22(2): 362–371
https://doi.org/10.1109/JLT.2003.822101
4 Ho K P. Phase-Modulated Optical Communication Systems. Berlin: Springer, 2005
5 Connelly M J. Semiconductor Optical Amplifiers. Berlin: Springer, 2007
6 Bonk R, Huber G, Vallaitis T, Koenig S, Schmogrow R, Hillerkuss D, Brenot R, Lelarge F, Duan G H, Sygletos S, Koos C, Freude W, Leuthold J. Linear semiconductor optical amplifiers for amplification of advanced modulation formats. Optics Express, 2012, 20(9): 9657–9672
https://doi.org/10.1364/OE.20.009657 pmid: 22535057
7 Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proceedings of the IEEE, 2007, 95(9): 1757–1766
https://doi.org/10.1109/JPROC.2007.900899
8 Lelarge F, Dagens B, Renaudier J, Brenot R, Accard A, van Dijk F, Make D, Le Gouezigou O, Provost J, Poingt F, Landreau J, Drisse O, Derouin E, Rousseau B, Pommereau F, Duan G. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 mm. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 111–124
https://doi.org/10.1109/JSTQE.2006.887154
9 Zilkie A J, Meier J, Mojahedi M, Poole P J, Barrios P, Poitras D, Rotter T J, Yang C, Stintz A, Malloy K J, Smith P W E, Aitchison J S. Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 mm. IEEE Journal of Quantum Electronics, 2007, 43(11): 982–991
https://doi.org/10.1109/JQE.2007.904474
10 Porzi C, Bogoni A, Contestabile G. Regeneration of DPSK signals in a saturated SOA. IEEE Photonics Technology Letters, 2012, 24(18): 1597–1599
https://doi.org/10.1109/LPT.2012.2210399
11 Porzi C, Bogoni A, Contestabile G. Regenerative wavelength conversion of DPSK signals through FWM in an SOA. IEEE Photonics Technology Letters, 2013, 25(2): 175–178
https://doi.org/10.1109/LPT.2012.2232287
12 Krzczanowicz L, Connelly M J. 40 Gb/s NRZ-DQPSK data all-optical wavelength conversion using four wave mixing in a bulk SOA. IEEE Photonics Technology Letters, 2013, 25(24): 2439–2441
https://doi.org/10.1109/LPT.2013.2288010
13 Matsuura M, Calabretta N, Raz O, Dorren H J S. Simultaneous multichannel wavelength conversion of 50-Gb/s NRZ-DQPSK signals with 100-GHz channel spacing using a quantum-dot SOA. In: Proceedings of 37th European Conference on Optical Communication (ECOC), 2011, 1–3
14 Contestabile G, Yoshida Y, Maruta A, Kitayama K. Coherent wavelength conversion in a quantum dot SOA. IEEE Photonics Technology Letters, 2013, 25(9): 791–794
https://doi.org/10.1109/LPT.2013.2250495
15 Contestabile G, Yoshida Y, Maruta A, Kitayama K. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA. Optics Express, 2012, 20(25): 27902–27907
https://doi.org/10.1364/OE.20.027902 pmid: 23262735
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[3] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[4] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[7] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[8] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[9] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[10] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[11] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[12] Hamidine MAHAMADOU, Xiuhua YUAN, Eljack M. SARAH, Weizheng ZOU. Simulation and comprehensive assessment of single channel RZ-DPSK optical link by dispersion management with channel bit rate beyond 40 Gbits/s[J]. Front Optoelec, 2012, 5(3): 322-329.
[13] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[14] Jie BI. Angular feature of conical emission in an isotropic amorphous medium pumped by femtosecond pulses[J]. Front Optoelec Chin, 2011, 4(4): 407-410.
[15] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed