Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (1) : 67-77    https://doi.org/10.1007/s12200-012-0297-3
REVIEW ARTICLE
Review on SOA-MZI-based photonic add/drop and switching operations
Claudio PORZI1, Giovanni SERAFINO1, Sergio PINNA1, An NGUYEN2, Giampiero CONTESTABILE1, Antonella BOGONI3()
1. The TeCIP Institute of Scuola Superiore Sant’Anna di Pisa, via G. Moruzzi 1, 56124 Pisa, Italy; 2. Centre d'optique, photonique et laser, 2375 rue de la Terrasse, local 2104, Université Laval, Québec, G1V 0A6, Canada; 3. CNIT, via G. Moruzzi 1, 56124 Pisa, Italy
 Download: PDF(945 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Semiconductor optical amplifier-Mach-Zehnder interferometer (SOA-MZI) is a technologically mature optical device that can be exploited for a wide range of operations on both amplitude and phase modulated signals, with performance limited by the carrier lifetime in the SOAs. Recent advances on SOA structures have demonstrated their suitability for high quality, ultra-fast photonic signal processing, making SOA-MZI a good candidate for elaborating signals in new generation high-capacity optical networks. Dynamic wavelength switching/routing and add/drop operations are expected to bring benefits in future optical networks in terms of improved system flexibility and efficiency. The capability of performing such operations directly in the optical domain can significantly reduce the number of opto/electrical and electro/optical conversions in the routing nodes, reducing their power consumption and their latency time. Moreover, since phase-shift keying (PSK) formats or other advanced modulation formats involving both amplitude and phase modulation, start to coexist in optical communication systems with the conventional on-off keying (OOK) modulation format, the availability of a single device, suitable for processing all these different signals, is mandatory. The SOA-MZI fits all these requirements for both OOK and constant-envelope phase-modulated signals, providing a compact and flexible solution. Here we review on the use of the SOA-MZI for carrying out all-optical switching operations, by realizing wavelength conversion and add/drop functionalities, both for OOK and differential binary phase shift keying (DPSK) signals up to 40 Gb/s. Power penalties lower than 2 dB are demonstrated in all cases.

Keywords all-optical signal processing      wavelength conversion      semiconductor optical amplifier-Mach-Zehnder interferometer (SOA-MZI)     
Corresponding Author(s): BOGONI Antonella,Email:antonella.bogoni@cnit.it   
Issue Date: 05 March 2013
 Cite this article:   
Claudio PORZI,Giovanni SERAFINO,Sergio PINNA, et al. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0297-3
https://academic.hep.com.cn/foe/EN/Y2013/V6/I1/67
Fig.1  Generic operation of wavelength shifter
Fig.1  Generic operation of wavelength shifter
Fig.1  Generic operation of wavelength shifter
Fig.1  Generic operation of wavelength shifter
Fig.2  Operation principle of improved scheme for 40 Gb/s OOK operations
Fig.2  Operation principle of improved scheme for 40 Gb/s OOK operations
Fig.2  Operation principle of improved scheme for 40 Gb/s OOK operations
Fig.2  Operation principle of improved scheme for 40 Gb/s OOK operations
Fig.3  Graphical description of operation, illustrating effect of pump signals on switched probes
Fig.3  Graphical description of operation, illustrating effect of pump signals on switched probes
Fig.3  Graphical description of operation, illustrating effect of pump signals on switched probes
Fig.3  Graphical description of operation, illustrating effect of pump signals on switched probes
Fig.4  Gain recovery dynamics of SOAs. ( a) Gain recovery time; (b) eye diagram of wavelength-shifted output data without holding beam; (c) eye diagram of wavelength-shifted output data with holding beam
Fig.4  Gain recovery dynamics of SOAs. ( a) Gain recovery time; (b) eye diagram of wavelength-shifted output data without holding beam; (c) eye diagram of wavelength-shifted output data with holding beam
Fig.4  Gain recovery dynamics of SOAs. ( a) Gain recovery time; (b) eye diagram of wavelength-shifted output data without holding beam; (c) eye diagram of wavelength-shifted output data with holding beam
Fig.4  Gain recovery dynamics of SOAs. ( a) Gain recovery time; (b) eye diagram of wavelength-shifted output data without holding beam; (c) eye diagram of wavelength-shifted output data with holding beam
Fig.5  Oscilloscope traces of input/output signals in the case of data at 10 Gb/s. (a) Input data; (b) gate signal; (c)wavelength-shifted output; (d) pass-through output; (e, f)transient edges of the output signals
Fig.5  Oscilloscope traces of input/output signals in the case of data at 10 Gb/s. (a) Input data; (b) gate signal; (c)wavelength-shifted output; (d) pass-through output; (e, f)transient edges of the output signals
Fig.5  Oscilloscope traces of input/output signals in the case of data at 10 Gb/s. (a) Input data; (b) gate signal; (c)wavelength-shifted output; (d) pass-through output; (e, f)transient edges of the output signals
Fig.5  Oscilloscope traces of input/output signals in the case of data at 10 Gb/s. (a) Input data; (b) gate signal; (c)wavelength-shifted output; (d) pass-through output; (e, f)transient edges of the output signals
Fig.6  Oscilloscope traces of input/output signals in the case of data at 40 Gb/s. (a) Input data; (b)gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f)transient edges of the output signals
Fig.6  Oscilloscope traces of input/output signals in the case of data at 40 Gb/s. (a) Input data; (b)gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f)transient edges of the output signals
Fig.6  Oscilloscope traces of input/output signals in the case of data at 40 Gb/s. (a) Input data; (b)gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f)transient edges of the output signals
Fig.6  Oscilloscope traces of input/output signals in the case of data at 40 Gb/s. (a) Input data; (b)gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f)transient edges of the output signals
Fig.7  BER measurements results (a) and input/output eye diagrams (b) at 10 Gb/s. The extinction ratio is 12.5, 12.1, and 11.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.7  BER measurements results (a) and input/output eye diagrams (b) at 10 Gb/s. The extinction ratio is 12.5, 12.1, and 11.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.7  BER measurements results (a) and input/output eye diagrams (b) at 10 Gb/s. The extinction ratio is 12.5, 12.1, and 11.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.7  BER measurements results (a) and input/output eye diagrams (b) at 10 Gb/s. The extinction ratio is 12.5, 12.1, and 11.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.8  BER measurements results (a) and input/output eye diagrams (b) at 40 Gb/s. The extinction ratio is 12, 11.4 and 9.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.8  BER measurements results (a) and input/output eye diagrams (b) at 40 Gb/s. The extinction ratio is 12, 11.4 and 9.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.8  BER measurements results (a) and input/output eye diagrams (b) at 40 Gb/s. The extinction ratio is 12, 11.4 and 9.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.8  BER measurements results (a) and input/output eye diagrams (b) at 40 Gb/s. The extinction ratio is 12, 11.4 and 9.8 dB for the input, pass-through and shifted eye diagram, respectively
Fig.9  Operation principle of modified proposed scheme for 40 Gb/s PSK operations
Fig.9  Operation principle of modified proposed scheme for 40 Gb/s PSK operations
Fig.9  Operation principle of modified proposed scheme for 40 Gb/s PSK operations
Fig.9  Operation principle of modified proposed scheme for 40 Gb/s PSK operations
Fig.10  Graphical description of SOA-MZI switch for pass-trough/data erasing operation
Fig.10  Graphical description of SOA-MZI switch for pass-trough/data erasing operation
Fig.10  Graphical description of SOA-MZI switch for pass-trough/data erasing operation
Fig.10  Graphical description of SOA-MZI switch for pass-trough/data erasing operation
Fig.11  Output spectra from SOA 2 with 10 (a) and 40 Gb/s (b) DPSK modulated data (res.: 0.1 nm)
Fig.11  Output spectra from SOA 2 with 10 (a) and 40 Gb/s (b) DPSK modulated data (res.: 0.1 nm)
Fig.11  Output spectra from SOA 2 with 10 (a) and 40 Gb/s (b) DPSK modulated data (res.: 0.1 nm)
Fig.11  Output spectra from SOA 2 with 10 (a) and 40 Gb/s (b) DPSK modulated data (res.: 0.1 nm)
Fig.12  Oscilloscope traces of input/output signals in the case of DPSK modulated data. (a) Input data; (b) gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f) transient edges of the output signals at 10 Gb/s; (g, h) transient edges of the output signals at 40 Gb/s
Fig.12  Oscilloscope traces of input/output signals in the case of DPSK modulated data. (a) Input data; (b) gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f) transient edges of the output signals at 10 Gb/s; (g, h) transient edges of the output signals at 40 Gb/s
Fig.12  Oscilloscope traces of input/output signals in the case of DPSK modulated data. (a) Input data; (b) gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f) transient edges of the output signals at 10 Gb/s; (g, h) transient edges of the output signals at 40 Gb/s
Fig.12  Oscilloscope traces of input/output signals in the case of DPSK modulated data. (a) Input data; (b) gate signal; (c) pass-through output; (d) wavelength-shifted output; (e, f) transient edges of the output signals at 10 Gb/s; (g, h) transient edges of the output signals at 40 Gb/s
Fig.13  (a) BER measurements for input (IN), pass-trough (PT) and wavelength-shifted (WS) data at 10 and 40 Gb/s; (b) eye diagrams of input/output demodulated data at 10 Gb/s; (c) eye diagrams of input/output demodulated data at 40 Gb/s
Fig.13  (a) BER measurements for input (IN), pass-trough (PT) and wavelength-shifted (WS) data at 10 and 40 Gb/s; (b) eye diagrams of input/output demodulated data at 10 Gb/s; (c) eye diagrams of input/output demodulated data at 40 Gb/s
Fig.13  (a) BER measurements for input (IN), pass-trough (PT) and wavelength-shifted (WS) data at 10 and 40 Gb/s; (b) eye diagrams of input/output demodulated data at 10 Gb/s; (c) eye diagrams of input/output demodulated data at 40 Gb/s
Fig.13  (a) BER measurements for input (IN), pass-trough (PT) and wavelength-shifted (WS) data at 10 and 40 Gb/s; (b) eye diagrams of input/output demodulated data at 10 Gb/s; (c) eye diagrams of input/output demodulated data at 40 Gb/s
1 Andriolli N, Buron J, Ruepp S, Cugini F, Valcarenghi L, Castoldi P. Label preference schemes in GMPLS controlled networks. IEEE Communications Letters , 2006, 10(12): 849–851
doi: 10.1109/LCOMM.2006.061034
2 Azodolmolky S, Klinkowski M, Marin E, Careglio D, Pareta J S, Tomkos I. A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks. Computer Networks , 2009, 53(7): 926–944
doi: 10.1016/j.comnet.2008.11.014
3 Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. IEEE/OSA Journal of Lightwave Technology , 2005, 23(1): 115–130
4 Schubert C, Schmidt-Langhorst C, Schulze K, Marembert V, Weber H G. Time division add-drop multiplexing up to 320 Gbit/s. In: Proceedings of Conference on Optical Fiber Communication Conference . 2005, 4, OThN2
5 Phillips D, Ellis A D, Thiele H J, Manning R J, Kelly A E. 40 Gbit/s all optical regeneration and demultiplexing using a semiconductor non-linear interferometer. IEE Electronics Letters , 1998, 34(24): 2340–2342
doi: 10.1049/el:19981630
6 Diez S, Ludwig R, Weber H G. Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing. IEEE Photonics Technology Letters , 1999, 11(1): 60–62
doi: 10.1109/68.736390
7 Liu Y, Tangdiongga E, Li Z, Zhang S, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE/OSA Journal of Lightwave Technology , 2006, 24(1): 230–236
8 Verdurmen E J M, Zhao Y, Tangdiongga E, Turkiewicz J P, Khoe G D, de Waardt H. Error-free all-optical add-drop multiplexing using HNLF in a NOLM at 160 Gbit/s. IEE Electronics Letters , 2005, 41(6): 340–350
9 Mulvad H, Galili M, Oxenlowe L K, Clausen A T, Jeppesen P, Gruner-Nielsen L. 640 Gbit/s optical time-division add-drop multiplexing in a non-linear optical loop mirror. IEEE/LEOS Winter Topicals Meeting Series , 2009, 209–210
10 Wadsworth W J. Nonlinear wavelength conversion and pulse manipulation in photonic crystal fibres. In: Proceedings of Eouropean Conference Optical Communication . 2010, Th.9.F.1
11 Bogoni A, Wu X, Fazal I, Willner A. 160 Gb/s time-domain channel extraction/insertion and all-optical logic operations exploiting a single PPLN waveguide. IEEE/OSA Journal of Lightwave Technology , 2009, 27(19): 4221–4227
12 Liu S, Kwang J L, Kakande J, Parmigiani F, Slavik R, Petropoulos P, Richardson D J, Gallo K. Phase-sensitive wavelength conversion based on cascaded quadratic processes in periodically poled lithium niobate waveguides. In: Proceedings of Conference on Optical Fiber Communication . 2011, Th.9.F.1.
13 Contestabile G, Maruta A, Sekiguchi S, Morito K, Sugawara M, Kitayama K. All-optical signal processing using QD-SOA. In: Proceedings of Electronics and Communications Conference . 2010, 200–201
14 Leuthold J, Besse P A, Eckner J, Gamper E, Dülk M, Melchior H. All-optical space switches with gain and principally ideal extinction ratios. IEEE Journal of Quantum Electronics , 1998, 34(4): 622–633
doi: 10.1109/3.663439
15 Nakamura S, Tajima K. Bit-rate-transparent non-return-to-zero all-optical wavelength conversion at up to 42 Gb/s by operating symmetric-Mach-Zehnder switch with new scheme. In: Proceedings of Conference on Optical Fiber Conference . 2004, FD3
16 Hattori M, Nishimura K, Inohara R, Usami M. Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter. IEEE/OSA Journal of Lightwave Technology , 2007, 25(2): 512–519
17 Yi X, Yu R, Kurumida J, Ben Yoo S J. A theoretical and experimental study on modulation-format-independent wavelength conversion. IEEE/OSA Journal of Lightwave Technology , 2010, 28(4): 587–595
doi: 10.1109/JLT.2009.2034120
18 Hatta T, Miyahara T, Miyazaki Y, Takagi K, Matsumoto K, Aoyagi T, Motoshima K, Mishina K, Maruta A, Kitayama K. Polarization-insensitive monolithic 40-Gbps SOA-MZI wavelength converter with narrow active waveguides. IEEE Journal on Selected Topics in Quantum Electronics , 2007, 13(1): 32–39
doi: 10.1109/JSTQE.2006.889048
19 Poustie A, Wyatt R, McDougall R, Maxwell G, Hemenway B R. Optical timing jitter transfer characteristics of a 40 Gb/s hybrid integrated SOA-Mach-Zehnder interferometer all-optical regenerator. In: Proceedings of European Conference on Optical Communication . 2005, 3, 413–414
20 Apostolopoulos D, Simos H, Petrantonakis D, Bogris A, Spyropoulou M, Bougioukos M, Vyrsokinos K, Pleros N, Syvridis D, Avramopoulos H. A new scheme for regenerative 40 Gb/s NRZ wavelength conversion using a hybrid integrated SOA-MZI. In: Proceedings of Conference on Optical Fiber Communication . 2010, OThS6
21 Kang I, Dorrer C, Zhang L, Rasras M, Buhl L , Bhardwaj A, Cabot S, Dinu M, Liu X, Cappuzzo M, Gomez L, Wong-Foy A, Chen Y F, Patel S, Neilson D T, Jacques J, Giles C R. Regenerative all-optical wavelength conversion of 40 Gb/s DPSK signals using a SOA MZI. In: Proceedings of the 31st European Conference on Optical Communication . 2005, 6, 29–30
22 Petrantonakis D, Zakynthinos P, Apostolopoulos D, Poustie A, Maxwell G, Avramopoulos H. All-optical four-wavelength burst mode regeneration using integrated quad SOA-MZI arrays. IEEE Photonics Technology Letters , 2008, 20(23): 1953–1955
doi: 10.1109/LPT.2008.2005736
23 Wang J P, Savage S J, Robinson B S, Hamilton S A, Ippen E P, Mu R, Wang R, Spiekman L, Stefanov B B. Regeneration using an SOA-MZI in a 100-pass 10000-km recirculating fiber loop. In: Proceedings of Conference on Lasers and Electro-Optics . 2007, CMZ1
24 Kim J Y, Kang J M, Kim T Y, Han S K. All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. IEEE/OSA Journal of Lightwave Technology, 2006, 24(9): 3392–3399
25 Martinez J M, Herrera J, Ramos F, Marti J. All-optical correlation employing single logic XOR gate with feedback. IEE Electronics Letters , 2006, 42(20): 1170–1171
doi: 10.1049/el:20061688
26 Aikawa Y, Shimizu S, Uenohara H. Demonstration of all-optical divider circuit using SOA-MZI-type XOR gate and feedback loop for forward error detection. IEEE/OSA Journal of Lightwave Technology , 2011, 29(15): 2259–2266
27 Vlachos KG, Monroy I T, Koonen A M J, Peucheret C, Jeppesen P. STOLAS: switching technologies for optically labeled signals. IEEE Communications Magazine , 2003, 41(11): 9–15
doi: 10.1109/MCOM.2003.1244923
28 Pleros N, Zakynthinos P, Poustie A, Tsiokos D, Bakopoulos P, Petrantonakis D, Kanellos G.T, Maxwell G, Avramopoulos H. Optical signal processing using integrated multi-element SOA–MZI switch arrays for packet switching. IET Optoelectronics , 2007, 1(3): 120–126
29 Zervas G, Sadeghioon L, Klonidis D, Qin Y, Nejabati R, Simeonidou D. Demonstration of novel multi-granular switch architecture on an application-aware end-to-end multi-bit rate OBS network testbed. In: Proceedings of ECOC 2007 Post-deadline papers . 2007, 1–2
30 Manning R J, Davies D A O. Three-wavelength device for all-optical signal processing. Optics Letters , 1994, 19(12): 889–991
doi: 10.1364/OL.19.000889 pmid:19844478
31 Nguyen A, Porzi C, Serafino G, Fresi F, Contestabile G, Bogoni A. All-optical gated wavelength converter-eraser using a single SOA-MZI. IEEE Photonics Technology Letters , 2011, 23(21): 1621–1623
doi: 10.1109/LPT.2011.2165318
32 Pinna S, Porzi C, Contestabile G, Bogoni A. Broadband operation of high-speed all-optical gated wavelength shifter. IEEE Photonics Technology Letters , 2012, 24(17): 1546–1548
doi: 10.1109/LPT.2012.2207885
33 Nguyen A, Porzi C, Pinna S, Contestabile G, Bogoni A. 40 Gb/s All-Optical Selective Wavelength Shifter. In: Proceedings of Conference on CLEO 2012: Science and Innovations . 2012, CM2A.2
34 Porzi C, Contestabile G, Bogoni A. All-optical simultaneous drop and wavelength conversion of DPSK data. Optics Letters , 2012, 37(13): 2523–2525
35 Morgan T J, Lacey J P R, Tucker R S. Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency. IEEE Photonics Technology Letters , 1998, 10(10): 1401–1403
doi: 10.1109/68.720274
36 Porzi C, Bogoni A, Potì L, Contestabile G. Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA. IEEE Photonics Technology Letters , 2005, 17(3): 633–635
doi: 10.1109/LPT.2004.842367
[1] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[2] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[3] Meng XIONG,Yunhong DING,Haiyan OU,Christophe PEUCHERET,Xinliang ZHANG. Comparison of wavelength conversion efficiency between silicon waveguide and microring resonator[J]. Front. Optoelectron., 2016, 9(3): 390-394.
[4] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[5] Yashar E. MONFARED, A. MOJTAHEDINIA, A. R. MALEKI JAVAN, A. R. MONAJATI KASHANI. Highly nonlinear enhanced-core photonic crystal fiber with low dispersion for wavelength conversion based on four-wave mixing[J]. Front Optoelec, 2013, 6(3): 297-302.
[6] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[7] Xiaofan ZHAO, Caiyun LOU, Yanming FENG. Optical signal processing based on semiconductor optical amplifier and tunable delay interferometer[J]. Front Optoelec Chin, 2011, 4(3): 308-314.
[8] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed