Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (4) : 445-456    https://doi.org/10.1007/s12200-012-0288-4
RESEARCH ARTICLE
Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers
Hussein TALEB, Kambiz ABEDI()
Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983963113, Iran
 Download: PDF(888 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, the effects of homogeneous and inhomogeneous broadenings on the response of quantum-dot semiconductor optical amplifier (QD-SOAs) are investigated. For the first time, the state space model is used to simulate static and dynamic characteristics of the QD-SOA. It is found that with decreasing the homogeneous and inhomogeneous broadenings, the saturation power of the QD-SOA decreases and the optical gain and the ultrafast gain compression increase. Simulation results show that with decreasing the homogeneous broadening from 20 to 1 meV, the gain compression increases from 40% to 90%, the unsaturated optical gain becomes approximately tripled, and the saturation power becomes two times less. Also, simulations demonstrate that with decreasing the inhomogeneous broadening from 50 to 25 meV, the gain compression increases from less than 50% to more than 90%, the unsaturated optical gain becomes approximately 10-fold, and the saturation power becomes three times less. In addition, it is found that the homogeneous and inhomogeneous linewidths should be small for nonlinear applications. The homogeneous and inhomogeneous broadenings need to be large enough for linear applications.

Keywords homogeneous broadening      inhomogeneous broadening      quantum-dot (QD)      semiconductor optical amplifier (SOA)     
Corresponding Author(s): ABEDI Kambiz,Email:K_Abedi@sbu.ac.ir   
Issue Date: 05 December 2012
 Cite this article:   
Hussein TALEB,Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0288-4
https://academic.hep.com.cn/foe/EN/Y2012/V5/I4/445
Fig.1  Energy band diagram of QD group. Relative energies of 91-th QD group are indicated in the figure. QW: quantum well, ES: excited state, GS: ground state
symbolvaluesymbolvalue
Lca2 mmEp22.2 /eV
W4 μmΓihc(v)40(10) meV
A8 × 10-5 cm2Γih50 meV
LH5 nmΓh10 meV
lD10Γ0.025
αi5 cm-1τ^egc(v)0.5(0.075) ps
T300 Kτ^ugc(v)0.33(0.022) ps
nD5 × 1010 cm-2τ^uec(v)0.66(0.043) ps
Dgc,v2τ^wuc(v)1.8(0.078) ps
Dec,v4τ^dr1 ns
Duc(v)10(20)τ^wrc(v)0.14(0.28) ns
Dwc(v)100(200)τ^urc(v)0.71(1.42) ns
|Menv|20.88rc(v)0.8(0.2)
?|e^.pcv|2?3.37 × 10-30 kg·eV2M+1181
fD6nr3.51
ND1023 m-3Vd4 × 10-10 cm3
Tab.1  Parameters used in numerical simulations
Fig.2  Temperature dependence of homogeneous linewidth
Fig.3  (a) Homogenous broadening function calculated for different homogeneous linewidths. The product of homogeneous and inhomogeneous functions () for different homogeneous linewidths, (b) , (c) and (d) . The inhomogeneous linewidth is
Fig.4  Absorption/gain spectra of QD-SOA under different values of homogeneous linewidth: (a) G = 1 meV, (b) G = 5 meV, and (c) G = 20 meV. (Injection current density: = 12 kA/cm, inhomogeneous broadening : G = 50 meV). At = 100 ps, a CW optical signal corresponding to the GS transition is injected into the active region. Simulations are terminated at = 200 ps, and the time interval between consecutive plots in the time axes is 6 ps
Fig.5  Optical gain response of QD-SOA under different values of homogeneous linewidth: (a) G = 1 meV; and (b) G = 20 meV; (c) percentage of ultra-fast gain compression as function of current density for three different homogeneous linewidths. (Inhomogeneous linewidth:G = 50 meV; pulse is injected at = 3 ps; simulations are terminated at = 15 ps)
Fig.6  Gain saturation curves of QD-SOA under different values of homogeneous linewidth (G = 1, 5, 10, 20 meV) and different current densities ( = 2, 6 kA/cm). Iinhomogeneous linewidth is G = 50 meV in all curves
Fig.7  (a) Homogenous and inhomogeneous broadening functions. The product of homogeneous and inhomogeneous functions () for different inhomogeneous linewidths, (b); (c); and (d). Homogeneous linewidth is in all figures
Fig.8  Absorption/gain spectra of QD-SOA under three different inhomogeneous linewidths (a) G = 25 meV; (b) G = 50 meV; (c) G = 75 meV. Pump current density is = 12 kA/cm, and homogeneous broadening is G = 10 meV. At = 100 ps, CW optical signal with photons energy corresponding to GS transition is injected into QD-SOA. Simulations are terminated at = 200 ps, and the time interval between consecutive plots in the time axis is 6 ps
Fig.9  Gain response of QD-SOA under different values of inhomogeneous linewidth and current density, (a) G = 25 meV; and (b) G = 75 meV; (c) percentage of ultra-fast gain compression as function of current density for different inhomogeneous linewidths. Homogeneous linewidth is G = 10 meV. Optical pulse is injected at = 3 ps and simulations are terminated at = 15 ps
Fig.10  Gain saturation curves of QD-SOA under different values of inhomogeneous broadening (G = 25, 50, 75 meV) and different current densities ( = 2, 6, and 12 kA/cm). In all curves, the homogeneous linewidth is G = 10 meV
1 Borri P, Langbein W, Hvam J M, Heinrichsdorff F, Mao H M, Bimberg D. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE Journal on Selected Topics in Quantum Electronics , 2000, 6(3): 544–551
doi: 10.1109/2944.865110
2 Sugawara M, Ebe H, Hatori N, Ishida M, Arakawa Y, Akiyama T, Otsubo K, Nakata Y. Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Physical Review B: Condensed Matter and Materials Physics , 2004, 69(23): 235332
doi: 10.1103/PhysRevB.69.235332
3 van der Poel M, Gehrig E, Hess O, Birkedal D, Hvam J M. Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations. IEEE Journal of Quantum Electronics , 2005, 41(9): 1115–1123
doi: 10.1109/JQE.2005.852795
4 Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2009, 45(3): 240–248
doi: 10.1109/JQE.2008.2010881
5 Bilenca A, Eisenstein G. On the noise properties of linear and nonlinear quantum-dot semiconductor optical amplifiers: the impact of inhomogeneously broadened gain and fast carrier dynamics. IEEE Journal of Quantum Electronics , 2004, 40(6): 690–702
doi: 10.1109/JQE.2004.828260
6 Berg T W, M?rk J. Saturation and noise properties of quantum-dot optical amplifiers. IEEE Journal of Quantum Electronics , 2004, 40(11): 1527–1539
doi: 10.1109/JQE.2004.835114
7 Akiyama T, Ekawa M, Sugawara M, Kawaguchi K, Sudo H, Kuramata A, Ebe H, Arakawa Y. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technology Letters , 2005, 17(8): 1614–1616
doi: 10.1109/LPT.2005.851884
8 Meuer C, Schmeckebier H, Fiol G, Arsenijevi’c D, Kim J, Eisenstein G, Bimberg D. Cross-gain modulation and four-wave mixing for wavelength conversion in undoped and p-doped 1.3-m quantum dot semiconductor optical amplifiers. IEEE Journal of Photonics , 2010, 2(2): 141–151
doi: 10.1109/JPHOT.2010.2044568
9 Sugawara M, Hatori N, Ishida M, Ebe H, Arakawa Y, Akiyama T, Otsubo K, Yamamoto Y, Nakata Y. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb·s-1 directly modulated lasers and 40 Gb·s-1 signal-regenerative amplifiers. Journal of Physics D: Applied Physics , 2005, 38(13): 2126–2134
doi: 10.1088/0022-3727/38/13/008
10 Rostami A, Nejad H B A, Qartavol R M, Saghai H R. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2010, 46(3): 354–360
doi: 10.1109/JQE.2009.2033253
11 Meuer C, Kim J, Laemmlin M, Liebich S, Eisenstein G, Bonk R, Vallaitis T, Leuthold J, Kovsh A, Krestnikov I, Bimberg D. High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm. IEEE Journal on Selected Topics in Quantum Electronics , 2009, 15(3): 749–756
doi: 10.1109/JSTQE.2009.2012395
12 Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2010, 46(11): 1670–1680
13 Kuntze S B, Zilkie A J, Pavel L, Aitchison J S. Nonlinear state-space model of semiconductor optical amplifiers with gain compression for system design and analysis. Journal of Lightwave Technology , 2008, 26(14): 2274–2281
doi: 10.1109/JLT.2008.922212
14 Taleb H, Abedi K, Golmohammadi S. Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection. Applied Optics , 2011, 50(5): 608–617
doi: 10.1364/AO.50.000608 pmid:21343980
15 Meuer C, Kim J, Laemmlin M, Liebich S, Capua A, Eisenstein G, Kovsh A R, Mikhrin S S, Krestnikov I L, Bimberg D. Static gain saturation in quantum dot semiconductor optical amplifiers. Optics Express , 2008, 16(11): 8269–8279
doi: 10.1364/OE.16.008269 pmid:18545539
16 Xiao J L, Yang Y D, Huang Y Z. Investigation of gain recovery for InAs/GaAs quantum dot semiconductor optical amplifiers by rate equation simulation. Optical and Quantum Electronics , 2009, 41(8): 613–626
doi: 10.1007/s11082-010-9368-0
17 Vasileiadis M, Alexandropoulos D, Adams M J, Simos H, Syvridis D. Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics , 2008, 14(4): 1180–1187
doi: 10.1109/JSTQE.2007.915517
18 Blood P. Gain and recombination in quantum dot lasers. IEEE Journal on Selected Topics in Quantum Electronics , 2009, 15(3): 808–818
doi: 10.1109/JSTQE.2008.2011998
19 Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2008, 44(7): 658–666
doi: 10.1109/JQE.2008.922325
20 Ozgur G, Demir A, Deppe D G. Threshold temperature dependence of a quantum-dot laser diode with and without p-doping. IEEE Journal of Quantum Electronics , 2009, 45(10): 1265–1272
doi: 10.1109/JQE.2009.2025660
21 Wong H C, Ren G B, Rorison J M. Mode amplification in inhomogeneous QD semiconductor optical amplifiers. Optical and Quantum Electronics , 2006, 38(4–6): 395–409
doi: 10.1007/s11082-006-0039-0
22 Qasaimeh O. Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics , 2003, 39(6): 793–798
doi: 10.1109/JQE.2003.810770
[1] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[2] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[3] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[4] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[5] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[6] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[7] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[8] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[9] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
[10] Jing HUANG, Deming LIU. WDM PON using 10-Gb/s DPSK downstream and re-modulated 10-Gb/s OOK upstream based on SOA[J]. Front Optoelec Chin, 2010, 3(4): 339-342.
[11] Zigang DUAN, Wei SHI, Yan LI, Guangyue CHAI. Gain properties and optical-feedback suppression of asymmetrical curved active waveguides[J]. Front Optoelec Chin, 2009, 2(4): 379-383.
[12] Yin ZHANG, Xinliang ZHANG, Xi HUANG, Cheng CHENG. Experimental investigation on slow light via four-wave mixing in semiconductor optical amplifier[J]. Front Optoelec Chin, 2009, 2(3): 259-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed