Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (2) : 114-128    https://doi.org/10.1007/s12200-020-1020-4
REVIEW ARTICLE
Graphene-based all-optical modulators
Chuyu ZHONG1,2, Junying LI3, Hongtao LIN1,2()
1. Key Laboratory of Micro-Nano Electronics and Smart System of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Microelectronics, Zhejiang University, Hangzhou 310027, China
3. College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(2326 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

All-optical devices, which are utilized to process optical signals without electro-optical conversion, play an essential role in the next generation ultrafast, ultralow power-consumption optical information processing systems. To satisfy the performance requirement, nonlinear optical materials that are associated with fast response, high nonlinearity, broad wavelength operation, low optical loss, low fabrication cost, and integration compatibility with optical components are required. Graphene is a promising candidate, particularly considering its electrically or optically tunable optical properties, ultrafast large nonlinearity, and high integration compatibility with various nanostructures. Thus far, three all-optical modulation systems utilize graphene, namely free-space modulators, fiber-based modulators, and on-chip modulators. This paper aims to provide a broad view of state-of-the-art researches on the graphene-based all-optical modulation systems. The performances of different devices are reviewed and compared to present a comprehensive analysis and perspective of graphene-based all-optical modulation devices.

Keywords graphene      saturable absorption      low power consumption      all-optical modulation     
Corresponding Author(s): Hongtao LIN   
Just Accepted Date: 27 May 2020   Online First Date: 28 June 2020    Issue Date: 21 July 2020
 Cite this article:   
Chuyu ZHONG,Junying LI,Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1020-4
https://academic.hep.com.cn/foe/EN/Y2020/V13/I2/114
Fig.1  Mechanisms and corresponding response time of referenced graphene-based AOMs. The modulation of complex refractive index ñ can be concluded into the modulation of the real part of refractive index (n for phase modulation) and imaginary part of refractive index (kfor amplitude modulation)
Fig.2  Evolution of carriers in graphene from the optical excitation state to the equilibrium state. Reproduced from Ref. [108]
Fig.3  (a) Illustration of the structure and modulation configuration of the graphene on silicon (GOS) AOM. The inset at the bottom illustrates the spatial dependence of the THz beam power along with the device when the modulation beam is switched on. (b) Modulation depth versus signal power of the GOS modulator. (c) Schematic of the experimental configuration used for the modulation measurements of the graphene on germanium (GOG) AOM. (d) Modulated THz signal under different modulation frequencies of the GOG modulator. (e) Experimental setup and scanning electron microscopy (SEM) image of a graphene-cladding silicon photonic crystal cavity modulator. The probe light is a narrow-band tunable semiconductor laser with a wavelength around 1550 nm, and the control laser is a 1064 nm laser. (f) Resonance wavelength variation with the control laser power of the modulator in (e). Reproduced from Refs. [89,90,113]
Fig.4  (a) Schematic illustration or microscope image of broadband all-optical modulation using a PDMS-supported-graphene/microfiber/MgF2 structure. Intensity variations of the probe signal with the input pump power when (b) the input probe power is fixed at 2.5 mW and (c) the input pump power is fixed at 512 mW. (d) Schematic illustration of the GCM. (e) Differential transmittance of the probe light as a function of the pump–probe time delay showing a response time of approximately 2.2 ps. The inset shows the dependence of the modulation depth on the pump intensity. Schematic diagram of (f) the stereo graphene–microfiber structure, where graphene was first wrapped on a rod followed by the microfiber; (g) the graphene-decorated microfiber with a pile of graphene flakes in the surrounding space and the evanescent field. Reproduced from Refs. [104,114116]
Fig.5  (a) Optical microscopic image of the tapered graphene-coated microfiber and schematic of the measurement setup. (b) Microscope image of graphene on the microfiber resonator and the graphene-coated region is annotated by the white curve. (c) Schematic diagram of GCM-based AOMs based on an all-fiber MZI. (d) Schematic and cross-sectional view of the polyvinyl butyral (PVB)-covered graphene on a partly-polished fiber AOM. The longitudinal cross-section shows detailed layers of the device. (e) Structural diagram of the as-grown graphene on a D-shaped fiber, and the FWM process shows two newly generated signals (ω3 and ω4). Reproduced from Refs. [84,85,92,118,119]
Fig.6  (a) Three-dimensional schematic illustration of a graphene/silicon/silica hybrid nanophotonic waveguide. The probe light is coupled using grating couplers, and the pump light is emitted from the top of the sample. (b) Dynamic responses of the output power for the TE and TM modes of hybrid nanophotonic wires with a local pump light. (c) Schematic diagram of the graphene-on-Si3N4 all-optical device. (d) Temporal response of the output probe pulse. Inset: average temperature change. (e) Schematic illustration of the graphene–silicon heterojunction modulator with the signal coupled by grating couplers and pump light illuminating from the free space. (f) Comparative performance of GSH and pure silicon AOMs at different modulation laser powers. (g) Schematic illustration of the graphene–plasmonic slot-waveguide AOM. (h) Modulation efficiency with respect to the modulation power. Reproduced from Refs. [86,121123]
Fig.7  (a) Schematic of the graphene-loaded metal–insulator–metal (MIM)-waveguide (WG). Cross-sectional side view of the MIM-WG. Calculated field profile of the eigenmode of the graphene-loaded MIM-WG. The air slot width (wslot) is 30 nm, and the Au thickness (tAu) is 20 nm. The scale bar is 20 nm. (b) Left: results of the pump–probe measurement. (Red circles) All-optical switching in the bilayer-graphene-loaded MIM-WG. (Blue circles) The autocorrelation of the input pulse. The input pulse width was 210 fs. (Solid black line) The Gaussian fit of the pump–probe signal. The control and signal pulse energies were 35 and 1.3 fJ, respectively, in the input silicon-wire WG. The pump–probe signals predicted from tpulse (210 fs) and the relaxation time of the graphene carrier, t, are also shown, where two Gaussian functions (FWHM= 210 fs) and a single exponential decay function (t from 100 fs to 1 ps) are convoluted. The magenta, orange-yellow, green, and light blue lines are for t = 100 fs, 200 fs, 300 fs, 500 fs, and 1 ps, respectively. Right: control pulse energy dependence of the extinction ratio for the bilayer-graphene-loaded MIM-WG. Reproduced from Ref. [1]
structure principle Rt/MF MD PC/TPD Ref.
Gra/Ge subsrate carrier induced Dk 200 kHz 94% 400 mW [90]
Gra/silicon PhC saturable absorption,
carrier induced Dn
10 kW/cm2 [113]
Gra/fiber saturable absorption 2.2 ps 38% 0.2 GW/cm2 [104]
Gra/fiber MZI Kerr 10 ns 52% 52.5 mW [92]
Gra/fiber knot thermal 294.7 μs 13 dB 2.6 mW [85]
Gra/Si3N4/SiO2 thermal 253 ns 10 dB 50 nJ [86]
Gra/SOI saturable absorption 1.65 ps 22.7% 1.38 pJ [124]
105Gra/MIM slot saturable absorption 0.26 ps 3.5 dB 35 fJ [1]
Tab.1  Performance matrix of the state-of-the-art graphene-based AOMs
1 M Ono, M Hata, M Tsunekawa, K Nozaki, H Sumikura, H Chiba, M Notomi. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43
https://doi.org/10.1038/s41566-019-0547-7
2 G T Reed, G Mashanovich, F Y Gardes, D J Thomson. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
https://doi.org/10.1038/nphoton.2010.179
3 M He, M Xu, Y Ren, J Jian, Z Ruan, Y Xu, S Gao, S Sun, X Wen, L Zhou, L Liu, C Guo, H Chen, S Yu, L Liu, X Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit·s−1 and beyond. Nature Photonics, 2019, 13(5): 359–364
https://doi.org/10.1038/s41566-019-0378-6
4 C Wang, M Zhang, X Chen, M Bertrand, A Shams-Ansari, S Chandrasekhar, P Winzer, M Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104
https://doi.org/10.1038/s41586-018-0551-y pmid: 30250251
5 M Li, L Wang, X Li, X Xiao, S Yu. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photonics Research, 2018, 6(2): 109–116
https://doi.org/10.1364/PRJ.6.000109
6 L Alloatti, R Palmer, S Diebold, K P Pahl, B Chen, R Dinu, M Fournier, J M Fedeli, T Zwick, W Freude, C Koos, J Leuthold. 100 GHz silicon–organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173
https://doi.org/10.1038/lsa.2014.54
7 C Haffner, W Heni, Y Fedoryshyn, J Niegemann, A Melikyan, D L Elder, B Baeuerle, Y Salamin, A Josten, U Koch, C Hoessbacher, F Ducry, L Juchli, A Emboras, D Hillerkuss, M Kohl, L R Dalton, C Hafner, J Leuthold. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
https://doi.org/10.1038/nphoton.2015.127
8 M Ayata, Y Fedoryshyn, W Heni, B Baeuerle, A Josten, M Zahner, U Koch, Y Salamin, C Hoessbacher, C Haffner, D L Elder, L R Dalton, J Leuthold. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358(6363): 630–632
https://doi.org/10.1126/science.aan5953 pmid: 29097545
9 C Haffner, D Chelladurai, Y Fedoryshyn, A Josten, B Baeuerle, W Heni, T Watanabe, T Cui, B Cheng, S Saha, D L Elder, L R Dalton, A Boltasseva, V M Shalaev, N Kinsey, J Leuthold. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556(7702): 483–486
https://doi.org/10.1038/s41586-018-0031-4 pmid: 29695845
10 F Davoodi, N Granpayeh. All optical logic gates−a tutorial. International Journal of Information & Communication Technology Research, 2012, 43(3): 65–98
11 P Singh, D K Tripathi, S Jaiswal, H K Dixit. All-optical logic gates: designs, classification, and comparison. Advances in Optical Technologies, 2014, 2014: 275083
https://doi.org/10.1155/2014/275083
12 P Minzioni, C Lacava, T Tanabe, J Dong, X Hu, G Csaba, W Porod, G Singh, A E Willner, A Almaiman, V Torres-Company, J Schröder, A C Peacock, M J Strain, F Parmigiani, G Contestabile, D Marpaung, Z Liu, J E Bowers, L Chang, S Fabbri, M Ramos Vázquez, V Bharadwaj, S M Eaton, P Lodahl, X Zhang, B J Eggleton, W J Munro, K Nemoto, O Morin, J Laurat, J Nunn. Roadmap on all-optical processing. Journal of Optics, 2019, 21(6): 063001
https://doi.org/10.1088/2040-8986/ab0e66
13 Z Chai, X Hu, F Wang, X Niu, J Xie, Q Gong. Ultrafast all-optical switching. Advanced Optical Materials, 2017, 5(7): 1600665
https://doi.org/10.1002/adom.201600665
14 V Sasikala, K Chitra. All optical switching and associated technologies: a review. Journal of Optics, 2018, 47(3): 307–317
https://doi.org/10.1007/s12596-018-0452-3
15 V R Almeida, C A Barrios, R R Panepucci, M Lipson. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084
https://doi.org/10.1038/nature02921 pmid: 15510144
16 C Koos, P Vorreau, T Vallaitis, P Dumon, W Bogaerts, R Baets, B Esembeson, I Biaggio, T Michinobu, F Diederich, W Freude, J Leuthold. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
https://doi.org/10.1038/nphoton.2009.25
17 B Gholipour, J Zhang, K F MacDonald, D W Hewak, N I Zheludev. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Advanced Materials, 2013, 25(22): 3050–3054
https://doi.org/10.1002/adma.201300588 pmid: 23625824
18 Z Chai, Y Zhu, X Hu, X Yang, Z Gong, F Wang, H Yang, Q Gong. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166
https://doi.org/10.1002/adom.201600271
19 K Nozaki, T Tanabe, A Shinya, S Matsuo, T Sato, H Taniyama, M Notomi. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
https://doi.org/10.1038/nphoton.2010.89
20 T D Vo, R Pant, M D Pelusi, J Schröder, D Y Choi, S K Debbarma, S J Madden, B Luther-Davies, B J Eggleton. Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals. Optics Letters, 2011, 36(5): 710–712
https://doi.org/10.1364/OL.36.000710 pmid: 21368957
21 J Hou, L Chen, W Dong, X Zhang. 40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide. Optics Express, 2016, 24(3): 2701–2711
https://doi.org/10.1364/OE.24.002701 pmid: 26906841
22 Z Chai, Y Zhu, X Y Hu, X Y Yang, Z B Gong, F F Wang, H Yang, Q H Gong. On-chip optical switch based on plasmon-photon hybrid nanostructure-coated multicomponent nanocomposite. Advanced Optical Materials, 2016, 4(8): 1159–1166
https://doi.org/10.1002/adom.201600271
23 F Wang, X Hu, H Song, C Li, H Yang, Q Gong. Ultralow-power all-optical logic data distributor based on resonant excitation enhanced nonlinearity by upconversion radiative transfer. Advanced Optical Materials, 2017, 5(20): 1700360
https://doi.org/10.1002/adom.201700360
24 Z Chai, X Hu, F Wang, C Li, Y Ao, Y Wu, K Shi, H Yang, Q Gong. Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites. Laser & Photonics Reviews, 2017, 11(5): 1700042
https://doi.org/10.1002/lpor.201700042
25 X Yang, X Hu, H Yang, Q Gong. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics, 2017, 6(1): 365–376
https://doi.org/10.1515/nanoph-2016-0118
26 W Dong, Z Huang, J Hou, R Santos, X Zhang. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Optics Letters, 2018, 43(9): 2150–2153
https://doi.org/10.1364/OL.43.002150 pmid: 29714776
27 B Guo, Q L Xiao, S H Wang, H Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser & Photonics Reviews, 2019, 13(12): 1800327
https://doi.org/10.1002/lpor.201800327
28 S Manzeli, D Ovchinnikov, D Pasquier, O V Yazyev, A Kis. 2D transition metal dichalcogenides. Nature Reviews. Materials, 2017, 2(8): 17033
https://doi.org/10.1038/natrevmats.2017.33
29 L Tarruell, D Greif, T Uehlinger, G Jotzu, T Esslinger. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302–305
https://doi.org/10.1038/nature10871 pmid: 22422263
30 F Xia, H Wang, D Xiao, M Dubey, A Ramasubramaniam. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
31 S Yu, X Wu, Y Wang, X Guo, L Tong. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128
https://doi.org/10.1002/adma.201606128 pmid: 28220971
32 L Jin, X Ma, H Zhang, H Zhang, H Chen, Y Xu. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Optics Express, 2018, 26(24): 31244–31252
https://doi.org/10.1364/OE.26.031244 pmid: 30650713
33 J Koo, J Park, J Lee, Y M Jhon, J H Lee. Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber. Optics Express, 2016, 24(10): 10575–10589
https://doi.org/10.1364/OE.24.010575 pmid: 27409880
34 Z Li, R Li, C Pang, N Dong, J Wang, H Yu, F Chen. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber. Optics Express, 2019, 27(6): 8727–8737
https://doi.org/10.1364/OE.27.008727 pmid: 31052685
35 M Liu, R Tang, A P Luo, W C Xu, Z C Luo. Graphene-decorated microfiber knot as a broadband resonator for ultrahigh repetition-rate pulse fiber lasers. Photonics Research, 2018, 6(10): C1–C7
https://doi.org/10.1364/PRJ.6.0000C1
36 M Liu, X W Zheng, Y L Qi, H Liu, A P Luo, Z C Luo, W C Xu, C J Zhao, H Zhang. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Optics Express, 2014, 22(19): 22841–22846
https://doi.org/10.1364/OE.22.022841 pmid: 25321754
37 W Liu, L Pang, H Han, M Liu, M Lei, S Fang, H Teng, Z Wei. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25(3): 2950–2959
https://doi.org/10.1364/OE.25.002950 pmid: 29519011
38 Y L Qi, H Liu, H Cui, Y Q Huang, Q Y Ning, M Liu, Z C Luo, A P Luo, W C Xu. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726
https://doi.org/10.1364/OE.23.017720 pmid: 26191834
39 P Yan, R Lin, S Ruan, A Liu, H Chen. A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film. Optics Express, 2015, 23(1): 154–164
https://doi.org/10.1364/OE.23.000154 pmid: 25835662
40 Z Luo, Y Li, M Zhong, Y Huang, X Wan, J Peng, J Weng. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Research, 2015, 3(3): A79–A86
https://doi.org/10.1364/PRJ.3.000A79
41 B Y Zhang, T Liu, B Meng, X Li, G Liang, X Hu, Q J Wang. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 2013, 4(1): 1811
https://doi.org/10.1038/ncomms2830 pmid: 23651999
42 W C Tan, L Huang, R J Ng, L Wang, D M N Hasan, T J Duffin, K S Kumar, C A Nijhuis, C Lee, K W Ang. A black phosphorus carbide infrared phototransistor. Advanced Materials, 2018, 30(6): 1705039
https://doi.org/10.1002/adma.201705039 pmid: 29266512
43 H Talebi, M Dolatyari, G Rostami, A Manzuri, M Mahmudi, A Rostami. Fabrication of fast mid-infrared range photodetector based on hybrid graphene-PbSe nanorods. Applied Optics, 2015, 54(20): 6386–6390
https://doi.org/10.1364/AO.54.006386 pmid: 26193418
44 F Jabbarzadeh, M Siahsar, M Dolatyari, G Rostami, A Rostami. Fabrication of new mid-infrared photodetectors based on graphene modified by organic molecules. IEEE Sensors Journal, 2015, 15(5): 2795–2800
45 L Huang, W C Tan, L Wang, B Dong, C Lee, K W Ang. Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power. ACS Applied Materials & Interfaces, 2017, 9(41): 36130–36136
https://doi.org/10.1021/acsami.7b09713 pmid: 28959887
46 Q Guo, A Pospischil, M Bhuiyan, H Jiang, H Tian, D Farmer, B Deng, C Li, S J Han, H Wang, Q Xia, T P Ma, T Mueller, F Xia. Black phosphorus mid-infrared photodetectors with high gain. Nano Letters, 2016, 16(7): 4648–4655
https://doi.org/10.1021/acs.nanolett.6b01977 pmid: 27332146
47 F Xia, H Wang, D Xiao, M Dubey, A Ramasubramaniam. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
48 Z Sun, A Martinez, F Wang. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
https://doi.org/10.1038/nphoton.2016.15
49 N Youngblood, M Li. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2017, 6(6): 1205–1218
https://doi.org/10.1515/nanoph-2016-0155
50 Z Ma, R Hemnani, L Bartels, R Agarwal, V J Sorger. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration. Applied Physics A, Materials Science & Processing, 2018, 124(2): 126
https://doi.org/10.1007/s00339-017-1541-x
51 Y Fang, Y Ge, C Wang, H Zhang. Mid-infrared photonics using 2D materials: status and challenges. Laser & Photonics Reviews, 2020, 14(1): 1900098
https://doi.org/10.1002/lpor.201900098
52 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
53 Q Bao, H Zhang, Z Ni, Y Wang, L Polavarapu, Z Shen, Q Xu, D Tang, K P Loh. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4(3): 297–307
https://doi.org/10.1007/s12274-010-0082-9
54 Q Bao, H Zhang, Y Wang, Z Ni, Y Yan, Z X Shen, K P Loh, D Y Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
https://doi.org/10.1002/adfm.200901007
55 Q Bao, H Zhang, J Yang, S Wang, D Tang, R Jose, S Ramakrishna, C T Lim, K P Loh. Graphene-polymer nanofiber membrane for ultrafast photonics. Advanced Functional Materials, 2010, 20(5): 782–791
https://doi.org/10.1002/adfm.200901658
56 H Zhang, D Tang, R J Knize, L Zhao, Q Bao, K P Loh. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters, 2010, 96(11): 111112
https://doi.org/10.1063/1.3367743
57 X M Liu, H R Yang, Y D Cui, G W Chen, Y Yang, X Q Wu, X K Yao, D D Han, X X Han, C Zeng, J Guo, W L Li, G Cheng, L M Tong. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Scientific Reports, 2016, 6(1): 26024
https://doi.org/10.1038/srep26024 pmid: 27181419
58 J Wu, Z Yang, C Qiu, Y Zhang, Z Wu, J Yang, Y Lu, J Li, D Yang, R Hao, E Li, G Yu, S Lin. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10(17): 8023–8030
https://doi.org/10.1039/C8NR00594J pmid: 29670975
59 N Flöry, P Ma, Y Salamin, A Emboras, T Taniguchi, K Watanabe, J Leuthold, L Novotny. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nature Nanotechnology, 2020, 15(2): 118–124
https://doi.org/10.1038/s41565-019-0602-z pmid: 32015504
60 X Wang, X Gan. Graphene integrated photodetectors and opto-electronic devices−a review. Chinese Physics B, 2017, 26(3): 034201
61 N Youngblood, Y Anugrah, R Ma, S J Koester, M Li. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Letters, 2014, 14(5): 2741–2746
https://doi.org/10.1021/nl500712u pmid: 24734877
62 Y Gao, R J Shiue, X Gan, L Li, C Peng, I Meric, L Wang, A Szep, D Walker Jr, J Hone, D Englund. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005
https://doi.org/10.1021/nl504860z pmid: 25700231
63 M Liu, X Yin, E Ulin-Avila, B Geng, T Zentgraf, L Ju, F Wang, X Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
https://doi.org/10.1038/nature10067 pmid: 21552277
64 G Liang, X Hu, X Yu, Y Shen, L H Li, A G Davies, E H Linfield, H K Liang, Y Zhang, S F Yu, Q J Wang. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photonics, 2015, 2(11): 1559–1566
https://doi.org/10.1021/acsphotonics.5b00317
65 C T Phare, Y H Daniel Lee, J Cardenas, M Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514
https://doi.org/10.1038/nphoton.2015.122
66 L Yu, Y Yin, Y Shi, D Dai, S He. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159–166
https://doi.org/10.1364/OPTICA.3.000159
67 S Yan, X Zhu, L H Frandsen, S Xiao, N A Mortensen, J Dong, Y Ding. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411
https://doi.org/10.1038/ncomms14411 pmid: 28181531
68 H Lin, Y Song, Y Huang, D Kita, S Deckoff-Jones, K Wang, L Li, J Li, H Zheng, Z Luo, H Wang, S Novak, A Yadav, C C Huang, R J Shiue, D Englund, T Gu, D Hewak, K Richardson, J Kong, J Hu. Chalcogenide glass-on-graphene photonics. Nature Photonics, 2017, 11(12): 798–805
https://doi.org/10.1038/s41566-017-0033-z
69 J Wu, Y Lu, S Feng, Z Wu, S Lin, Z Hao, T Yao, X Li, H Zhu, S Lin. The interaction between quantum dots and graphene. Applications in Graphene-Based Solar Cells and Photodetectors, 2018, 28(50): 1804712
70 V Sorianello, M Midrio, G Contestabile, I Asselberghs, J Van Campenhout, C Huyghebaert, I Goykhman, A K Ott, A C Ferrari, M Romagnoli. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44
https://doi.org/10.1038/s41566-017-0071-6
71 Z Cheng, X Zhu, M Galili, L H Frandsen, H Hu, S Xiao, J Dong, Y Ding, L K Oxenløwe, X Zhang. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi: 10.1515/nanoph-2019-0381
https://doi.org/10.1515/nanoph-2019-0381
72 K Chen, X Zhou, X Cheng, R Qiao, Y Cheng, C Liu, Y Xie, W Yu, F Yao, Z Sun, F Wang, K Liu, Z Liu. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nature Photonics, 2019, 13(11): 754–759
https://doi.org/10.1038/s41566-019-0492-5
73 Z Cheng, R Cao, J Guo, Y Yao, K Wei, S Gao, Y Wang, J Dong, H Zhang. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi: 10.1515/nanoph-2019-0510
https://doi.org/10.1515/nanoph-2019-0510
74 K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos, A A Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
https://doi.org/10.1038/nature04233 pmid: 16281030
75 A K Geim. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534
https://doi.org/10.1126/science.1158877 pmid: 19541989
76 S Luo, Y Wang, X Tong, Z Wang. Graphene-based optical modulators. Nanoscale Research Letters, 2015, 10(1): 199
https://doi.org/10.1186/s11671-015-0866-7 pmid: 26034412
77 K I Bolotin, K J Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, P Kim, H L Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
78 K F Mak, M Y Sfeir, Y Wu, C H Lui, J A Misewich, T F Heinz. Measurement of the optical conductivity of graphene. Physical Review Letters, 2008, 101(19): 196405
https://doi.org/10.1103/PhysRevLett.101.196405 pmid: 19113291
79 K S Novoselov, V I Fal’ko, L Colombo, P R Gellert, M G Schwab, K Kim. A roadmap for graphene. Nature, 2012, 490(7419): 192–200
https://doi.org/10.1038/nature11458 pmid: 23060189
80 G Xing, H Guo, X Zhang, T C Sum, C H Huan. The physics of ultrafast saturable absorption in graphene. Optics Express, 2010, 18(5): 4564–4573
https://doi.org/10.1364/OE.18.004564 pmid: 20389469
81 D Sun, Z K Wu, C Divin, X Li, C Berger, W A de Heer, P N First, T B Norris. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402
https://doi.org/10.1103/PhysRevLett.101.157402 pmid: 18999638
82 P Dong, W Qian, H Liang, R Shafiiha, N N Feng, D Feng, X Zheng, A V Krishnamoorthy, M Asghari. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858
https://doi.org/10.1364/OE.18.009852 pmid: 20588834
83 A A Balandin, S Ghosh, W Bao, I Calizo, D Teweldebrhan, F Miao, C N Lau. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907
https://doi.org/10.1021/nl0731872 pmid: 18284217
84 X Gan, C Zhao, Y Wang, D Mao, L Fang, L Han, J Zhao. Graphene-assisted all-fiber phase shifter and switching. Optica, 2015, 2(5): 468–471
https://doi.org/10.1364/OPTICA.2.000468
85 Y Wang, X Gan, C Zhao, L Fang, D Mao, Y Xu, F Zhang, T Xi, L Ren, J Zhao. All-optical control of microfiber resonator by graphene’s photothermal effect. Applied Physics Letters, 2016, 108(17): 171905
https://doi.org/10.1063/1.4947577
86 C Qiu, Y Yang, C Li, Y Wang, K Wu, J Chen. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046
https://doi.org/10.1038/s41598-017-16989-9 pmid: 29213106
87 K J Tielrooij, N C H Hesp, A Principi, M B Lundeberg, E A A Pogna, L Banszerus, Z Mics, M Massicotte, P Schmidt, D Davydovskaya, D G Purdie, I Goykhman, G Soavi, A Lombardo, K Watanabe, T Taniguchi, M Bonn, D Turchinovich, C Stampfer, A C Ferrari, G Cerullo, M Polini, F H L Koppens. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nature Nanotechnology, 2018, 13(1): 41–46
https://doi.org/10.1038/s41565-017-0008-8 pmid: 29180742
88 R Soref, B Bennett. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129
https://doi.org/10.1109/JQE.1987.1073206
89 P Weis, J L Garcia-Pomar, M Höh, B Reinhard, A Brodyanski, M Rahm. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 2012, 6(10): 9118–9124
https://doi.org/10.1021/nn303392s pmid: 22992128
90 Q Y Wen, W Tian, Q Mao, Z Chen, W W Liu, Q H Yang, M Sanderson, H W Zhang. Graphene based all-optical spatial terahertz modulator. Scientific Reports, 2014, 4(1): 7409
https://doi.org/10.1038/srep07409 pmid: 25491194
91 H Zhang, S Virally, Q Bao, L K Ping, S Massar, N Godbout, P Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
https://doi.org/10.1364/OL.37.001856 pmid: 22660052
92 S Yu, X Wu, K Chen, B Chen, X Guo, D Dai, L Tong, W Liu, Y Ron Shen. All-optical graphene modulator based on optical Kerr phase shift. Optica, 2016, 3(5): 541–544
https://doi.org/10.1364/OPTICA.3.000541
93 Z Sun, T Hasan, F Torrisi, D Popa, G Privitera, F Wang, F Bonaccorso, D M Basko, A C Ferrari. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
https://doi.org/10.1021/nn901703e pmid: 20099874
94 Q Bao, K P Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
https://doi.org/10.1021/nn300989g pmid: 22512399
95 A Marini, J D Cox, F J García De Abajo. Theory of graphene saturable absorption. Physical Review B, 2017, 95(12): 125408
https://doi.org/10.1103/PhysRevB.95.125408
96 D Brida, A Tomadin, C Manzoni, Y J Kim, A Lombardo, S Milana, R R Nair, K S Novoselov, A C Ferrari, G Cerullo, M Polini. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4: 1987
pmid: 23770933
97 G W Hanson. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 2008, 103(6): 064302
https://doi.org/10.1063/1.2891452
98 K J Tielrooij, L Piatkowski, M Massicotte, A Woessner, Q Ma, Y Lee, K S Myhro, C N Lau, P Jarillo-Herrero, N F van Hulst, F H L Koppens. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nature Nanotechnology, 2015, 10(5): 437–443
https://doi.org/10.1038/nnano.2015.54 pmid: 25867941
99 G Soavi, G Wang, H Rostami, A Tomadin, O Balci, I Paradisanos, E A A Pogna, G Cerullo, E Lidorikis, M Polini, A C Ferrari. Hot electrons modulation of third-harmonic generation in graphene. ACS Photonics, 2019, 6(11): 2841–2849
https://doi.org/10.1021/acsphotonics.9b00928
100 J C W Song, K J Tielrooij, F H L Koppens, L S Levitov. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Physical Review B, 2013, 87(15): 155429
https://doi.org/10.1103/PhysRevB.87.155429
101 J M Dawlaty, S Shivaraman, M Chandrashekhar, F Rana, M G Spencer. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 2008, 92(4): 042116
https://doi.org/10.1063/1.2837539
102 M Trushin, A Grupp, G Soavi, A Budweg, D De Fazio, U Sassi, A Lombardo, A C Ferrari, W Belzig, A Leitenstorfer, D Brida. Ultrafast pseudospin dynamics in graphene. Physical Review B, 2015, 92(16): 165429
https://doi.org/10.1103/PhysRevB.92.165429
103 J C Song, M Y Reizer, L S Levitov. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602
https://doi.org/10.1103/PhysRevLett.109.106602 pmid: 23005313
104 W Li, B Chen, C Meng, W Fang, Y Xiao, X Li, Z Hu, Y Xu, L Tong, H Wang, W Liu, J Bao, Y R Shen. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959
https://doi.org/10.1021/nl404356t pmid: 24397481
105 A Tomadin, S M Hornett, H I Wang, E M Alexeev, A Candini, C Coletti, D Turchinovich, M Kläui, M Bonn, F H L Koppens, E Hendry, M Polini, K J Tielrooij. The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies. Science Advances, 2018, 4(5): eaar5313
https://doi.org/10.1126/sciadv.aar5313 pmid: 29756035
106 S A Mikhailov. Theory of the strongly nonlinear electrodynamic response of graphene: a hot electron model. Physical Review B, 2019, 100(11): 115416
https://doi.org/10.1103/PhysRevB.100.115416
107 W C Tian, W H Li, W B Yu, X H Liu. A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines, 2017, 8(5): 163
https://doi.org/10.3390/mi8050163
108 P A George, J Strait, J Dawlaty, S Shivaraman, M Chandrashekhar, F Rana, M G Spencer. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Letters, 2008, 8(12): 4248–4251
https://doi.org/10.1021/nl8019399 pmid: 19367881
109 A Majumdar, J Kim, J Vuckovic, F Wang. Electrical control of silicon photonic crystal cavity by graphene. Nano Letters, 2013, 13(2): 515–518
https://doi.org/10.1021/nl3039212 pmid: 23286896
110 K Fan, J Suen, X Wu, W J Padilla. Graphene metamaterial modulator for free-space thermal radiation. Optics Express, 2016, 24(22): 25189–25201
https://doi.org/10.1364/OE.24.025189 pmid: 27828457
111 B Zeng, Z Huang, A Singh, Y Yao, A K Azad, A D Mohite, A J Taylor, D R Smith, H T Chen. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light, Science & Applications, 2018, 7(1): 51
https://doi.org/10.1038/s41377-018-0055-4 pmid: 30839521
112 X Gan, K F Mak, Y Gao, Y You, F Hatami, J Hone, T F Heinz, D Englund. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Letters, 2012, 12(11): 5626–5631
https://doi.org/10.1021/nl302746n pmid: 23043452
113 Z Shi, L Gan, T Xiao, H Guo, Z Li. All-optical modulation of a graphene-cladded silicon photonic crystal cavity. ACS Photonics, 2015, 2(11): 1513–1518
https://doi.org/10.1021/acsphotonics.5b00469
114 Z B Liu, M Feng, W S Jiang, W Xin, P Wang, Q W Sheng, Y G Liu, D N Wang, W Y Zhou, J G Tian. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901
https://doi.org/10.1088/1612-2011/10/6/065901
115 J H Chen, B C Zheng, G H Shao, S J Ge, F Xu, Y Q Lu. An all-optical modulator based on a stereo graphene–microfiber structure. Light, Science & Applications, 2015, 4(12): e360
https://doi.org/10.1038/lsa.2015.133
116 S L Yu, C Meng, B Chen, H Wang, X Wu, W Liu, S Zhang, Y Liu, Y Su, L Tong. Graphene decorated microfiber for ultrafast optical modulation. Optics Express, 2015, 23(8): 10764–10770
https://doi.org/10.1364/OE.23.010764 pmid: 25969114
117 C Meng, S L Yu, H Q Wang, Y Cao, L M Tong, W T Liu, Y R Shen. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light, Science & Applications, 2015, 4(11): e348
https://doi.org/10.1038/lsa.2015.121
118 H Zhang, N Healy, L Shen, C C Huang, D W Hewak, A C Peacock. Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss. Scientific Reports, 2016, 6(1): 23512
https://doi.org/10.1038/srep23512 pmid: 27001353
119 P C Debnath, S Uddin, Y W Song. Ultrafast all-optical switching incorporating in situ graphene grown along an optical fiber by the evanescent field of a laser. ACS Photonics, 2018, 5(2): 445–455
https://doi.org/10.1021/acsphotonics.7b00925
120 M Romagnoli, V Sorianello, M Midrio, F H L Koppens, C Huyghebaert, D Neumaier, P Galli, W Templ, A D’errico, A C Ferrari. Graphene-based integrated photonics for next-generation datacom and telecom. Nature Reviews Materials, 2018, 3(10): 392–414
https://doi.org/10.1038/s41578-018-0040-9
121 L Yu, J Zheng, Y Xu, D Dai, S He. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386–11393
https://doi.org/10.1021/nn504377m pmid: 25372937
122 F Sun, L Xia, C Nie, J Shen, Y Zou, G Cheng, H Wu, Y Zhang, D Wei, S Yin, C Du. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure. Nanotechnology, 2018, 29(13): 135201
https://doi.org/10.1088/1361-6528/aaa8be pmid: 29345625
123 F Sun, L Xia, C Nie, C Qiu, L Tang, J Shen, T Sun, L Yu, P Wu, S Yin, S Yan, C Du. An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm. Applied Physics Express, 2019, 12(4): 042009
https://doi.org/10.7567/1882-0786/ab0a89
124 H Wang, N Yang, L Chang, C Zhou, S Li, M Deng, Z Li, Q Liu, C Zhang, Z Li, Y Wang. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468
https://doi.org/10.1364/PRJ.380170
125 M Ono, H Taniyama, H Xu, M Tsunekawa, E Kuramochi, K Nozaki, M Notomi. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 2016, 3(9): 999–1005
https://doi.org/10.1364/OPTICA.3.000999
126 B A Ruzicka, S Wang, L K Werake, B Weintrub, K P Loh, H Zhao. Hot carrier diffusion in graphene. Physical Review B, 2010, 82(19): 195414
https://doi.org/10.1103/PhysRevB.82.195414
127 J Zhu, X Cheng, Y Liu, R Wang, M Jiang, D Li, B Lu, Z Ren. Stimulated Brillouin scattering induced all-optical modulation in graphene microfiber. Photonics Research, 2019, 7(1): 8–13
https://doi.org/10.1364/PRJ.7.000008
128 Y Wang, F Zhang, X Tang, X Chen, Y Chen, W Huang, Z Liang, L Wu, Y Ge, Y Song, J Liu, D Zhang, J Li, H Zhang. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser & Photonics Reviews, 2018, 12(6): 1800016
https://doi.org/10.1002/lpor.201800016
129 F H Koppens, D E Chang, F J García de Abajo. Graphene plasmonics: a platform for strong light-matter interactions. Nano Letters, 2011, 11(8): 3370–3377
https://doi.org/10.1021/nl201771h pmid: 21766812
130 K J A Ooi, D T H Tan. Nonlinear graphene plasmonics. Proceedings of the Royal Society of London, Series A, 2017, 473(2206): 20170433
[1] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[2] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[3] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[4] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[5] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[6] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[7] Ran HAO,Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 2014, 7(3): 277-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed