Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (4) : 535-543    https://doi.org/10.1007/s12200-016-0541-3
REVIEW ARTICLE
A tutorial introduction to graphene-microfiber waveguide and its applications
Xiaoying HE(),Min XU,Xiangchao ZHANG,Hao ZHANG
Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
 Download: PDF(484 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene-microfiber with the advantage of graphene material and the microfiber has been hailed as a wonderful waveguide in optics. A tutorial introduction to the graphene-microfiber (GMF) waveguides including the effect of graphene on waveguide, fabrication and applications has been presented. Here, we reviewed recent progress in the graphene waveguides from mode-locking and Q-switching in fiber laser to gas sensing and optical modulation. A brief outlook for opportunities and challenges of GMF in the future has been presented. With the novel nanotechnology emerging, GMF could offer new possibilities for future-optic circuits, systems and networks.

Keywords graphene      microfiber      optical mode locking      optical sensor     
Corresponding Author(s): Xiaoying HE   
Just Accepted Date: 08 January 2016   Online First Date: 29 January 2016    Issue Date: 29 November 2016
 Cite this article:   
Xiaoying HE,Min XU,Xiangchao ZHANG, et al. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0541-3
https://academic.hep.com.cn/foe/EN/Y2016/V9/I4/535
Fig.1  Schematic diagram of GMF waveguide [2931]. LG is the length of graphene, d is the microfiber diameter
Fig.2  Fabrication process of GMF waveguide in Fig. 1(a) [31]. G: graphene
Fig.3  Fabrication process of GMF waveguide in Fig. 1(b) [29]
Fig.4  Real and imaginary parts of the conductivity and the permittivity of infinite graphene sheet at wavelength 1550 nm
Fig.5  Real and imaginary parts of the refractive index of the intrinsic monolayer graphene sheet vs. the wavelength
Fig.6  (a) and (b) Cross-sectional views of microfiber and GMF waveguide; (c) and (d) electric field distribution in the cross section of microfiber and GMF waveguide; (e) and (f) field distribution along the y-coordinate direction in microfiber and GMF waveguide
Fig.7  Pulse-width-tuned pulses generated by GMF passive mode-locking [38,39]. GSA: graphene saturable absorber, PC: polarized controller, WDM: wavelength division multiplex, EDF: Erbium-doped fiber
Fig.8  Experimental results of GMF gas sensors [33]
1 Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
2 Avouris P. Graphene: electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294
https://doi.org/10.1021/nl102824h pmid: 20879723
3 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
https://doi.org/10.1038/nature04233 pmid: 16281030
4 Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355
https://doi.org/10.1016/j.ssc.2008.02.024
5 Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008, 100(1): 016602-1–016602-4
https://doi.org/10.1103/PhysRevLett.100.016602 pmid: 18232798
6 Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206–209
https://doi.org/10.1126/science.1152793 pmid: 18339901
7 Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308-1–1308-7
https://doi.org/10.1126/science.1156965 pmid: 18388259
8 Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Rayleigh imaging of graphene and graphene layers. Nano Letters, 2007, 7(9): 2711–2717
https://doi.org/10.1021/nl071168m pmid: 17713959
9 Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084
https://doi.org/10.1038/nature02921 pmid: 15510144
10 Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics, 2007, 1(7): 402–406
https://doi.org/10.1038/nphoton.2007.95
11 Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
https://doi.org/10.1038/nphoton.2007.299
12 Seibert K, Cho G C, Kütt W, Kurz H, Reitze D H, Dadap J I, Ahn H, Downer M C, Malvezzi A M. Femtosecond carrier dynamics in graphite. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 2842–2851
https://doi.org/10.1103/PhysRevB.42.2842 pmid: 9995773
13 Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite. Physical Review Letters, 2009, 102(8): 086809-1–086809-4
https://doi.org/10.1103/PhysRevLett.102.086809 pmid: 19257774
14 Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402-1–157402-4
https://doi.org/10.1103/PhysRevLett.101.157402 pmid: 18999638
15 Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401-1–097401-4
https://doi.org/10.1103/PhysRevLett.105.097401 pmid: 20868195
16 Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
https://doi.org/10.1364/OL.37.001856 pmid: 22660052
17 Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhou X, Wu B, Chiang K S. Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photonics Technology Letters, 2014, 26(3): 249–252
https://doi.org/10.1109/LPT.2013.2291897
18 Wu Y, Yao B C, Feng Q Y, Cao X L, Zhou X Y, Rao Y J, Gong Y, Zhang W L, Wang Z G, Chen Y F, Chiang K S. Generation of cascaded four-wave-mixing with graphene-coated microfiber. Photonics Research, 2015, 3(2): A64–A68
https://doi.org/10.1364/PRJ.3.000A64
19 Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843
https://doi.org/10.1038/nnano.2009.292 pmid: 19893532
20 Kim K, Choi J, Kim T, Cho S, Chung H. A role for graphen in silicon-based semiconductor devices. Nature, 2011, 479((7373)): 338–344
21 Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485
https://doi.org/10.1021/nl204202k pmid: 22332750
22 Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415
https://doi.org/10.1038/nphoton.2011.102
23 Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
https://doi.org/10.1021/nn300989g pmid: 22512399
24 Tong L, Lou J, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035
https://doi.org/10.1364/OPEX.12.001025 pmid: 19474918
25 Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819
https://doi.org/10.1038/nature02193 pmid: 14685232
26 Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotaper. Optics Express, 2004, 12(10): 2258–2263
https://doi.org/10.1364/OPEX.12.002258 pmid: 19483801
27 Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S, Richardson D J. Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics, 2009, 1(1): 107–161
https://doi.org/10.1364/AOP.1.000107
28 Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901-1–065901-5
https://doi.org/10.1088/1612-2011/10/6/065901
29 Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959
https://doi.org/10.1021/nl404356t pmid: 24397481
30 Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhang W, Wang Z, Chen Y. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400206-1–4400206-6
31 Yao B, Wu Y, Cheng Y, Zhang A, Cong Y, Rao Y, Wang Z, Chen Y. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors and Actuators B: Chemical, 2014, 194: 142–148
https://doi.org/10.1016/j.snb.2013.12.085
32 Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z G, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22(23): 28154–28162
https://doi.org/10.1364/OE.22.028154 pmid: 25402055
33 Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K S. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters, 2014, 39(5): 1235–1237
https://doi.org/10.1364/OL.39.001235 pmid: 24690715
34 Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
https://doi.org/10.1021/nn901703e pmid: 20099874
35 He X, Liu Z, Wang D, Yang M, Liao C R, Zhao X. Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation. Journal of Lightwave Technology, 2012, 30(7): 984–989
https://doi.org/10.1109/JLT.2011.2182499
36 Wang J, Luo Z, Zhou M, Ye C, Fu H, Cai Z, Cheng H, Xu H, Qi W. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics Journal, 2012, 4(5): 1295–1305
https://doi.org/10.1109/JPHOT.2012.2208736
37 Sheng Q, Feng M, Xin W, Han T, Liu Y, Liu Z, Tian J. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Optics Express, 2013, 21(12): 14859–14866
https://doi.org/10.1364/OE.21.014859 pmid: 23787673
38 Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247
https://doi.org/10.1364/OE.22.010239 pmid: 24921727
39 He X, Wang D N, Liu Z. Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber. IEEE Photonics Technology Letters, 2014, 26(4): 360–363
https://doi.org/10.1109/LPT.2013.2294017
40 Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P, Ye C Y. Multi-wavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field. Laser Physics Letters, 2012, 9(3): 229–233
https://doi.org/10.1002/lapl.201110124
41 Luo A, Zhu P, Liu H, Zheng X, Zhao N, Liu M, Cui H, Luo Z, Xu W. Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser. Optics Express, 2014, 22(22): 27019–27025
https://doi.org/10.1364/OE.22.027019 pmid: 25401852
42 Zhao N, Liu M, Liu H, Zheng X, Ning Q, Luo A, Luo Z, Xu W. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Optics Express, 2014, 22(9): 10906–10913
https://doi.org/10.1364/OE.22.010906 pmid: 24921789
43 Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y, Liu Z, Qu B. High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. Optics Express, 2013, 21(1): 204–209
https://doi.org/10.1364/OE.21.000204 pmid: 23388912
44 Sheng Q W, Feng M, Xin W, Guo H, Han T Y, Li Y G, Liu Y G, Gao F, Song F, Liu Z B, Tian J G. Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser. Applied Physics Letters, 2014, 105(4): 041901-1–041901-5
https://doi.org/10.1063/1.4891645
45 Ren A, Feng M, Song F, Ren Y, Yang S, Yang Z, Li Y, Liu Z, Tian J. Actively Q-switched ytterbium-doped fiber laser by an all-optical Q-switcher based on graphene saturable absorber. Optics Express, 2015, 23(16): 21490–21496
https://doi.org/10.1364/OE.23.021490
46 Ahmad H, Dernaika M, Harun S W. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror. Optics Express, 2014, 22(19): 22794–22801
https://doi.org/10.1364/OE.22.022794 pmid: 25321748
47 Qi Y, Liu H, Cui H, Huang Q, Ning Q, Liu M, Luo Z, Luo A, Xu W,Graphene-deposited microfiber photonics device for ultrahigh-repetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726
https://doi.org/10.1364/OE.23.017720
48a Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
https://doi.org/10.1126/science.1202691 pmid: 21659598
48 Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294
https://doi.org/10.1126/science.1202691 pmid: 21659598
49 Yan S, Zheng B, Chen J, Xu F, Lu Y,Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters, 2015, 107: 053502-1–053502-4
https://doi.org/10.1063/1.4928247
50 He X, Zhang X, Zhang H, Xu M. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4500107-1–4500107-7
https://doi.org/10.1109/JSTQE.2013.2270278
51 Sun X, Qiu C, Wu J, Zhou H, Pan T, Mao J, Yin X, Liu R, Gao W, Fang Z, Su Y. Broadband photodetection in a microfiber-graphene device. Optics Express, 2015, 23(19): 25209–25216
https://doi.org/10.1364/OE.23.025209
52 Xing X, Zheng J, Sun C, Li F, Zhu D, Lei L, Cai X, Wu T. Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation. Optics Express, 2013, 21(26): 31862–31871
https://doi.org/10.1364/OE.21.031862 pmid: 24514782
53 Zhu B, Ren G, Gao Y, Yang Y, Lian Y, Jian S. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Optics Express, 2014, 22(20): 24096–24103
https://doi.org/10.1364/OE.22.024096 pmid: 25321984
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[3] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[4] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[5] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[6] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[7] Ran HAO,Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 2014, 7(3): 277-292.
[8] Yaoguang MA, Limin TONG. Optically pumped semiconductor nanowire lasers[J]. Front Optoelec, 2012, 5(3): 239-247.
[9] Changkui HU, Deming LIU. Transmission-type SPR sensor based on coupling of surface plasmons to radiation modes using a dielectric grating[J]. Front Optoelec Chin, 2009, 2(2): 182-186.
[10] Xinwan LI, Jianping CHEN. Can communications and sensors work together in one network?[J]. Front Optoelec Chin, 2009, 2(2): 148-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed