neff),graphene,Mach-Zehnder interferometer (MZI),optical modulators," /> neff),graphene,Mach-Zehnder interferometer (MZI),optical modulators,"/> neff),graphene,Mach-Zehnder interferometer (MZI),optical modulators,"/>
Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    0, Vol. 0 Issue (0) : 277-292    https://doi.org/10.1007/s12200-014-0424-4
REVIEW ARTICLE
Recent developments in graphene-based optical modulators
Ran HAO(),Jiamin JIN,Xinchang WEI,Xiaofeng JIN,Xianmin ZHANG,Erping LI()
Department of Information Science and Electronics Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(2714 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene has shown promising perspectives in optical active components due to the large active-control of its permittivity-variation. This paper systematically reviews the recent developments of graphene-based optical modulators, including material property, different integration schemes, single-layer graphene-based modulator, multi-layer and few-layer graphene-based modulators, corresponding figure-of-merits, wavelength/temperature tolerance, and graphene-based fiber-optic modulator. The different treatments for graphene’s isotropic and anisotropic property were also discussed. The results showed graphene is an excellent material for enhancing silicon’s weak modulation capability after it is integrated into the silicon platform, and has great potentials for complementary metal oxide semiconductor (CMOS) compatible optical devices, showing significant influence on optical interconnects in future integrated optoelectronic circuits.

Keywords dynamic control      electro-absorption (EA) effect      electro-refraction (ER) effect      neff)')" href="#">effective mode index (neff)      graphene      Mach-Zehnder interferometer (MZI)      optical modulators     
Corresponding Author(s): Ran HAO   
Issue Date: 09 September 2014
 Cite this article:   
Ran HAO,Jiamin JIN,Xinchang WEI, et al. Recent developments in graphene-based optical modulators[J]. Front. Optoelectron., 0, 0(0): 277-292.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0424-4
https://academic.hep.com.cn/foe/EN/Y0/V0/I0/277
Fig.1  Conductivity and permittivity of an infinite graphene sheet (the wavelength is fixed at 1550 nm)(reprinted from Ref. [19])
Fig.2  (a) 3D view of GESW; (b) real and imaginary parts of effective modal index variation under different chemical potentials for GESW(reprinted from Ref. [19])
Fig.3  (a) Linear relationship between the real part of effective modal index and the real part of graphene’s in-plane permittivity; (b) linear relationship between the imaginary part of effective modal index and the imaginary part of graphene’s in-plane permittivity(reprinted from Ref. [19])
Fig.4  (a) Schematic pictures for top view of the MZ modulator configuration; (b) relationship between Lπ/ Lmax and μc; (c) relationship between the applied votages/extinction ratio and μc
Fig.5  (a) Schematic pictures for the absorption modulator configuration; (b) relationship between L8 dB and μc
Fig.6  Transverse magnetic (TM) polarization where graphene is assumed as isotropic: (a) real and imaginary part of effective modal index variation under different chemical potentials; (b) electric field distribution at μc = 0.513 eV; transverse electric (TE) polarization where graphene is assumed as anisotropic: (c) real and imaginary part of effective modal index variation under different chemical potentials; (d) electric field distribution at μc = 0.513 eV(reprinted from Ref. [19])
Fig.7  (a) Schematic pictures for eight-layer graphene embedded MZ modulator configuration; (b) corresponding electric field distribution in one of the arm; (c) relationship between Lπ/Lmax and Δμc; (d) relationship between the applied votages/extinction ratio and Δμc(reprinted from Ref. [19])
Fig.8  (a) Re(neff) with chemical potential variation for monolayer, two separated monolayer, and bi-layer GESW; (b) Im(neff) with chemical potential variation for monolayer, two separated monolayer, and bi-layer GESW; (c) (d) and (e) represent the electric field distribution for TE polarization mode of monolayer, two separated monolayer, and bi-layer GESW under chemical potential of 0 eV, respectively(reprinted from Ref. [38])
Fig.9  Maximum variation of Re(neff) as function of the number of graphene layer; the inset depicts the energy ratio kg/ktotal(reprinted from Ref. [38])
Fig.10  (a) Red line depicts the maximum variation Re(neff) as function of incident light wavelength and black line depicts the required length Lπ as function of incident light wavelength; (b) red line depicts the maximum variation Re(neff) as function of temperature and black line depicts the required length Lπ as function of temperature(reprinted from Ref. [38])
Fig.11  Schematic of the graphene-covered-microfiber structure. The microfiber is sandwiched between low refractive index MgF2 substrate (with a refractive index of 1.37 at 1.55 μm) and PDMS-supported graphene film(reprinted from Ref. [42])
Fig.12  Schematic illustration of a graphene coated optical fiber modulator. A thin layer of graphene is wrapped around a microfiber that is a section tapered down from a standard telecom optical fiber (reprinted from Ref. [43])
1 Jalali B, Fathpour S. Silicon photonics. Journal of Lightwave Technology, 2006, 24(12): 4600-4615
doi: 10.1109/JLT.2006.885782
2 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64-67
doi: 10.1038/nature10067 pmid: 21552277
3 Tu X, Liow T Y, Song J, Luo X, Fang Q, Yu M, Lo G Q. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Optics Express, 2013, 21(10): 12776-12782
doi: 10.1364/OE.21.012776 pmid: 23736495
4 Thomson D, Gardes F Y, Fedeli J M, Zlatanovic S, Hu Y, Kuo B P P, Myslivets E, Alic N, Radic S, Mashanovich G Z, Reed G T. 50-Gb/s silicon optical modulator. IEEE Photonics Technology Letters, 2012, 24(4): 234-236
doi: 10.1109/LPT.2011.2177081
5 Baba T, Akiyama S, Imai M, Hirayama N, Takahashi H, Noguchi Y, Horikawa T, Usuki T. 50-Gb/s ring-resonator-based silicon modulator, Optical Express, 2013, 21(10): 11869-11876
6 Thomson D J, Gardes F Y, Cox D C, Fedeli J M, Mashanovich G Z, Reed G T.Self-aligned silicon ring resonator optical modulator with focused ion beam error correction, Journal of the Optical Society of America B, 2013, 30(2): 445-449
7 Tang Y, Peters J D, Bowers J E. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. Optics Express, 2012, 20(10): 11529-11535
doi: 10.1364/OE.20.011529 pmid: 22565772
8 Smirnova D A, Gorbach A V, Iorsh I V, Shadrivov I V, Kivshar Y S. Nonliear swithing with a graphene coupler. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(4): 045443
doi: 10.1103/PhysRevB.88.045443
9 Kim K, Cho S H, Lee C W. Nonlinear optics: graphene-silicon fusion. Nature Photonics, 2012, 6(8): 502-503
doi: 10.1038/nphoton.2012.177
10 Lee C C, Suzuki S, Xie W, Schibli T R. Broadband graphene electro-optic modulators with sub-wavelength thickness. Optics Express, 2012, 20(5): 5264-5269
doi: 10.1364/OE.20.005264 pmid: 22418332
11 Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G. Broadband graphene terahertz modulators enabled by intraband transitions. Nature Communications, 2012, 3(4): 780
doi: 10.1038/ncomms1787 pmid: 22510685
12 Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11): 749-758
doi: 10.1038/nphoton.2012.262
13 Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291-1294
doi: 10.1126/science.1202691 pmid: 21659598
14 Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677-3694
doi: 10.1021/nn300989g pmid: 22512399
15 Hao R, Cassan E, Xu Y, Qiu M, Wei X C, Li E P. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 460189
16 Hao R, Li E, Wei X. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37(14): 2934-2936
doi: 10.1364/OL.37.002934 pmid: 22825183
17 Auditore A, de Angelis C, Locatelli A, Aceves A B. Tuning of surface plasmon polaritons beat length in graphene directional couplers. Optics Letters, 2013, 38(20): 4228-4231
doi: 10.1364/OL.38.004228 pmid: 24321966
18 Zhu X, Yan W, Mortensen N A, Xiao S. Bends and splitters in graphene nanoribbon waveguides. Optics Express, 2013, 21(3): 3486-3491
doi: 10.1364/OE.21.003486 pmid: 23481806
19 Hao R, Du W, Chen H, Jin X, Yang L, Li E. Ultra-compact optical modulator by graphene induced electro-refraction effect. Applied Physics Letters, 2013, 103(6): 061116
doi: 10.1063/1.4818457
20 Li Z, Yu N. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Applied Physics Letters, 2013, 102(13): 131108
doi: 10.1063/1.4800931
21 Andersen D R. Graphene-based long-wave infrared TM surface plasmon modulator. Journal of the Optical Society of America B, Optical Physics, 2010, 27(4): 818-823
doi: 10.1364/JOSAB.27.000818
22 Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11): 749-758
doi: 10.1038/nphoton.2012.262
23 Lu Z, Zhao W. Nanoscale electro-optic modulators based on graphene-slot waveguides. Journal of the Optical Society of America B, Optical Physics, 2012, 29(6): 1490-1496
doi: 10.1364/JOSAB.29.001490
24 Mikhailov S A, Ziegler K. New electromagnetic mode in graphene. Physical Review Letters, 2007, 99(1): 016803
doi: 10.1103/PhysRevLett.99.016803 pmid: 17678180
25 Jablan M, Buljan H, Solja?i? M. Plasmonics in graphene at infrared frequencies. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(24): 245435
doi: 10.1103/PhysRevB.80.245435
26 Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(12): 125431
doi: 10.1103/PhysRevB.85.125431
27 Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 2011, 6(10): 630-634
doi: 10.1038/nnano.2011.146 pmid: 21892164
28 Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487(7405): 82-85
pmid: 22722866
29 Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenovi? M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487(7405): 77-81
pmid: 22722861
30 Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter, 2007, 19(2): 026222
doi: 10.1088/0953-8984/19/2/026222
31 Gosciniak J, Tan D T. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology, 2013, 24(18): 185202
doi: 10.1088/0957-4484/24/18/185202 pmid: 23575218
32 Lin H, Pantoja M F, Angulo L D, Alvarez J, Martin R G, Garcia S G. FDTD modeling of graphenedevices using complex conjugate dispersion material model. IEEE Microwave and Wireless Components Letters, 2012, 22(12): 612-614
doi: 10.1109/LMWC.2012.2227466
33 Wang B, Zhang X, Yuan X, Teng J. Optical coupling of surface plasmons between graphene sheets. Applied Physics Letters, 2012, 100(13): 131111
doi: 10.1063/1.3698133
34 Li H, Wang L, Huang Z, Sun B, Zhai X, Li X. Mid-infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system. Europhysics Letters, 2013, 104(3): 37001
doi: 10.1209/0295-5075/104/37001
35 Yang L, Hu T, Hao R, Qiu C, Xu C, Yu H, Xu Y, Jiang X, Li Y, Yang J. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide. Optics Letters, 2013, 38(14): 2512-2515
doi: 10.1364/OL.38.002512 pmid: 23939097
36 Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824-830
doi: 10.1038/nature01937 pmid: 12917696
37 Kim K, Choi J Y, Kim T, Cho S H, Chung H J. A role for graphene in silicon-based semiconductor devices. Nature, 2011, 479(7373): 338-344
doi: 10.1038/nature10680 pmid: 22094694
38 Du W, Hao R, Li E P. The study of few-layer graphene based Mach-Zehnder modulator. Optics Communications, 2014, 323: 49-53
39 Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411-415
40 Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters, 2007, 7(9): 2758-2763
doi: 10.1021/nl071254m pmid: 17655269
41 Zhou F, Hao R, Jin X, Zhang X, Li E. A Graphene-enhanced fiberoptic phase modulator with large linear dynamic range. IEEE Photonics Technology Letters, 2014 (accepted)
42 LiuZ B, FengM, JiangW S, XinW, WangP, ShengQ W, LiuY G, Wang D N, ZhouW Y, TianJ G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901
doi: 10.1088/1612-2011/10/6/065901
43 Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955-959
doi: 10.1021/nl404356t pmid: 24397481
[1] Chuyu ZHONG, Junying LI, Hongtao LIN. Graphene-based all-optical modulators[J]. Front. Optoelectron., 2020, 13(2): 114-128.
[2] Petri MUSTONEN, David M. A. MACKENZIE, Harri LIPSANEN. Review of fabrication methods of large-area transparent graphene electrodes for industry[J]. Front. Optoelectron., 2020, 13(2): 91-113.
[3] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[4] Daoxin DAI,Yanlong YIN,Longhai YU,Hao WU,Di LIANG,Zhechao WANG,Liu LIU. Silicon-plus photonics[J]. Front. Optoelectron., 2016, 9(3): 436-449.
[5] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[6] Lili MAO,Qizhen SUN,Ping LU,Zefeng LAO,Deming LIU. Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing[J]. Front. Optoelectron., 2015, 8(4): 431-438.
[7] Wei XIONG,Yunshen ZHOU,Wenjia HOU,Lijia JIANG,Masoud MAHJOURI-SAMANI,Jongbok PARK,Xiangnan HE,Yang GAO,Lisha FAN,Tommaso BALDACCHINI,Jean-Francois SILVAIN,Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Front. Optoelectron., 2015, 8(4): 351-378.
[8] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[9] Yiwen RONG, Yijie HUO, Edward T. FEI, Marco FIORENTINO, Michael R.T. TAN, Tomasz OCHALSKI, Guillaume HUYET, Lars THYLEN, Marek CHACINSKI, Theodore I. KAMINS, James S. HARRIS. High speed optical modulation in Ge quantum wells using quantum confined stark effect[J]. Front Optoelec, 2012, 5(1): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed