Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 82-89    https://doi.org/10.1007/s12200-012-0194-9
RESEARCH ARTICLE
High speed optical modulation in Ge quantum wells using quantum confined stark effect
Yiwen RONG1, Yijie HUO1(), Edward T. FEI1, Marco FIORENTINO2, Michael R.T. TAN2, Tomasz OCHALSKI3, Guillaume HUYET3, Lars THYLEN4, Marek CHACINSKI4, Theodore I. KAMINS1, James S. HARRIS1
1. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; 2. Quantum Science Research, Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA; 3. Tyndall National Institute, Lee Maltings, Photonics Building, Cork, Ireland; 4. Photonics and Microwave Engineering Royal Institute of Technology Kista, Stockholm S-164 40, Sweden
 Download: PDF(548 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We focus on the optimization of SiGe material deposition, the minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The device fabrication is based on processes for standard Si electronics and is suitable for mass-production. We present observations of quantum confinement and quantum-confined Stark effect (QCSE) electroabsorption in Ge quantum wells (QWs) with SiGe barriers grown on Si substrates. Though Ge is an indirect gap semiconductor, the resulting effects are at least as clear and strong as seen in typical III–V QW structures at similar wavelengths. We also demonstrated a modulator, with eye diagrams of up to 3.5 GHz, a small driving voltage of 2.5 V and a modulation bandwidth at about 10 GHz. Finally, carrier dynamics under ultra-fast laser excitation and high-speed photocurrent response are investigated.

Keywords electroabsorption effect      Ge      optical interconnections      optical modulators      quantum-confined Stark effect (QCSE)      Ge/SiGe quantum wells (QWs)     
Corresponding Author(s): HUO Yijie,Email:yijiehuo@gmail.com   
Issue Date: 05 March 2012
 Cite this article:   
Edward T. FEI,Marco FIORENTINO,Michael R.T. TAN, et al. High speed optical modulation in Ge quantum wells using quantum confined stark effect[J]. Front Optoelec, 2012, 5(1): 82-89.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0194-9
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/82
Fig.1  Quantum well conduction band and valence band energy (blue lines), carriers’ wave functions (green lines) and energy states (red dash lines), and transition energy (arrows) with and without electric field influence
Fig.2  Quantum well conduction band and valence band energy (blue lines), carriers’ wave functions (green lines) and energy states (red dash lines), and transition energy (arrows) with and without electric field influence
Fig.3  (a) TEM cross section image of 10 pairs of Ge/SiGe MQW grown on Si; (b) 2D XRD reciprocal-space map of quantum well samples
Fig.4  High-speed modulator device process flow (a) epi wafer; (b) two mesa etch; (c) oxide passivation deposition; (d) double contact for p and n regions; (e) metal deposition for contacts
Fig.5  SEM of the top view of the modulator
Fig.6  Optical absorption current measurement
Fig.7  (a) Optical eye diagram of the 40 μm devices at 3.5 GHz; (b) optical response to 10 GHz sine wave RF signal
Fig.8  Pump probe measurement setup
Fig.9  Pump probe measurement result
Fig.10  Small signal measurement for 6 μm × 6 μm device
1 Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H, Burrus C A. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Physical Review Letters , 1984, 53(22): 2173-2177
doi: 10.1103/PhysRevLett.53.2173
2 Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H, Burrus C A. Electric field dependence of optical absorption near the bandgap of quantum well structures. Physical Review B: Condensed Matter and Materials Physics , 1985, 32(2): 1043-1060
doi: 10.1103/PhysRevB.32.1043
3 Lewen R, Irmscher S, Westergren U, Thylen L, Eriksson U. Segmented transmission-line electroabsorption modulators. Journal of Lightwave Technology , 2004, 22(1): 172-179
doi: 10.1109/JLT.2003.822829
4 Arad U, Redmard E, Shamay M, Averboukh A, Levit S, Efron U. Development of a large high-performance 2-D array of GaAs-GaAs multiple quantum-well modulators. IEEE Photonics Technology Letters , 2003, 15(11): 1531-1533
doi: 10.1109/LPT.2003.818663
5 Simes J, Yan R H, Geels R S, Coldren L A, English J H, Gossard A C, Lishan D G. Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation. Applied Physics Letters , 1988, 53(8): 637-639
doi: 10.1063/1.99837
6 Lee Y H, Jewell J L, Walker S J, Tu C W, Harbison J P, Florez L T. Electrodispersive multiple quantum well modulator. Applied Physics Letters , 1988, 53(18): 1684-1686
doi: 10.1063/1.99797
7 Pezeshki B, Thomas D, Harris J S Jr. Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators. Applied Physics Letters , 1990, 57(15): 1491-1493
doi: 10.1063/1.103373
8 Bar-Joseph I, Sucha G, Miller D A B, Chemla D S, Miller B I, Koren U. Self-electro-optic effect device and modulation convertor with InGaAs/InP multiple quantum wells. Applied Physics Letters , 1988, 52(4): 51-53
9 Goossen K W, Yan R H, Cunningham J E, Jan W Y. AlxGa1-xAs-AIAs quantum well surface-normal electro absorption modulators operating at visible wavelengths. Applied Physics Letters , 1991, 59(15): 1829-1831
doi: 10.1063/1.106212
10 Pezeshki B, Lord S M, Boykin T B, Shoop B L, Harris J S Jr. AlGaAs/AlAs QW Modulator for 6328 ? Operation. Electronics Letters , 1991, 27(21): 1971-1973
doi: 10.1049/el:19911221
11 Kuo Y H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A B, Harris J S. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature , 2005, 437(7063): 1334-1336
doi: 10.1038/nature04204 pmid:16251959
12 Kuo Y H, Lee Y K, Ge Y S, Ren S, Roth J E, Kamins T I, Miller D A B, Harris J S. Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE Journal of Selected Topics in Quantum Electronics , 2006, 12(6): 1503-1513
13 Miller D A B. Rationale and challenges for optical interconnects to electronic chips. In: Proceedings of the IEEE , 2000, 88(6): 728-749
doi: 10.1109/5.867687
14 Kibar O, Van Blerkom D A, Fan C, Esener S C. Power minimization and technology comparisons for digital free-space ptoelectronic interconnections. Journal of Lightwave Technology , 1999, 17(4): 546-555
doi: 10.1109/50.754783
15 Cho H, Kapur P, Saraswat K C. Power comparison between high speed electrical and optical interconnects for interchip communication. Journal of Lightwave Technology , 2004, 22(9): 2021-2033
doi: 10.1109/JLT.2004.833531
16 Park J S, Karunasiri R P G, Wang K L. Observation of large Stark shift in GexSi1-x/Si multiple quantum wells. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures , 1990, 8(2): 217-220
doi: 10.1116/1.584813
17 MacFarlane G G, McLean T P, Quarrington J E, Roberts V. Fine structure in the absorption-edge spectrum of Ge. Physical Review , 1957, 108(6): 1377-1383
doi: 10.1103/PhysRev.108.1377
18 Dash W C, Newman R. Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Physical Review , 1955, 99(4): 1151-1155
doi: 10.1103/PhysRev.99.1151
19 Kane E O. Band structure of indium antimonide. Journal of Physics and Chemistry of Solids , 1957, 1(4): 249-261
doi: 10.1016/0022-3697(57)90013-6
[1] Xiazi HUANG, Yingying ZHOU, Chi Man WOO, Yue PAN, Liming NIE, Puxiang LAI. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review[J]. Front. Optoelectron., 2020, 13(4): 327-351.
[2] Yulia S. MAKLYGINA, Alexei S. SKOBELTSIN, Tatiana A. SAVELIEVA, Galina V. PAVLOVA, Ivan V. CHEKHONIN, Olga I. GURINA, Anastasiya A. Chernysheva, Sergey A. Cherepanov, Victor B. LOSCHENOV. Study of possibility of cell recognition in brain tumors[J]. Front. Optoelectron., 2020, 13(4): 371-380.
[3] Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3−xP nanocrystals[J]. Front. Optoelectron., 2020, 13(2): 139-148.
[4] Harpreet KAUR, Munish RATTAN. Improved offline multi-objective routing and wavelength assignment in optical networks[J]. Front. Optoelectron., 2019, 12(4): 433-444.
[5] Chao PENG, Danhua CAO, Yubin WU, Qun YANG. Robot visual guide with Fourier-Mellin based visual tracking[J]. Front. Optoelectron., 2019, 12(4): 413-421.
[6] Fatah ALMABOUADA, Manuel Adler ABREU, João M. P. COELHO, Kamal Eddine AIADI. Experimental and simulation assessments of underwater light propagation[J]. Front. Optoelectron., 2019, 12(4): 405-412.
[7] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[8] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[9] Jun ZENG, Rong LIN, Xianlong LIU, Chengliang ZHAO, Yangjian CAI. Review on partially coherent vortex beams[J]. Front. Optoelectron., 2019, 12(3): 229-248.
[10] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[11] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[12] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[13] Xiaoli JING, Haobo CHENG, Yongfu WEN. Shape reconstruction of large optical surface with high-order terms in fringe reflection technique[J]. Front. Optoelectron., 2019, 12(2): 180-189.
[14] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[15] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed