|
|
High speed optical modulation in Ge quantum wells using quantum confined stark effect |
Yiwen RONG1, Yijie HUO1( ), Edward T. FEI1, Marco FIORENTINO2, Michael R.T. TAN2, Tomasz OCHALSKI3, Guillaume HUYET3, Lars THYLEN4, Marek CHACINSKI4, Theodore I. KAMINS1, James S. HARRIS1 |
1. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; 2. Quantum Science Research, Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA; 3. Tyndall National Institute, Lee Maltings, Photonics Building, Cork, Ireland; 4. Photonics and Microwave Engineering Royal Institute of Technology Kista, Stockholm S-164 40, Sweden |
|
|
Abstract We focus on the optimization of SiGe material deposition, the minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The device fabrication is based on processes for standard Si electronics and is suitable for mass-production. We present observations of quantum confinement and quantum-confined Stark effect (QCSE) electroabsorption in Ge quantum wells (QWs) with SiGe barriers grown on Si substrates. Though Ge is an indirect gap semiconductor, the resulting effects are at least as clear and strong as seen in typical III–V QW structures at similar wavelengths. We also demonstrated a modulator, with eye diagrams of up to 3.5 GHz, a small driving voltage of 2.5 V and a modulation bandwidth at about 10 GHz. Finally, carrier dynamics under ultra-fast laser excitation and high-speed photocurrent response are investigated.
|
Keywords
electroabsorption effect
Ge
optical interconnections
optical modulators
quantum-confined Stark effect (QCSE)
Ge/SiGe quantum wells (QWs)
|
Corresponding Author(s):
HUO Yijie,Email:yijiehuo@gmail.com
|
Issue Date: 05 March 2012
|
|
1 |
Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H, Burrus C A. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Physical Review Letters , 1984, 53(22): 2173-2177 doi: 10.1103/PhysRevLett.53.2173
|
2 |
Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H, Burrus C A. Electric field dependence of optical absorption near the bandgap of quantum well structures. Physical Review B: Condensed Matter and Materials Physics , 1985, 32(2): 1043-1060 doi: 10.1103/PhysRevB.32.1043
|
3 |
Lewen R, Irmscher S, Westergren U, Thylen L, Eriksson U. Segmented transmission-line electroabsorption modulators. Journal of Lightwave Technology , 2004, 22(1): 172-179 doi: 10.1109/JLT.2003.822829
|
4 |
Arad U, Redmard E, Shamay M, Averboukh A, Levit S, Efron U. Development of a large high-performance 2-D array of GaAs-GaAs multiple quantum-well modulators. IEEE Photonics Technology Letters , 2003, 15(11): 1531-1533 doi: 10.1109/LPT.2003.818663
|
5 |
Simes J, Yan R H, Geels R S, Coldren L A, English J H, Gossard A C, Lishan D G. Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation. Applied Physics Letters , 1988, 53(8): 637-639 doi: 10.1063/1.99837
|
6 |
Lee Y H, Jewell J L, Walker S J, Tu C W, Harbison J P, Florez L T. Electrodispersive multiple quantum well modulator. Applied Physics Letters , 1988, 53(18): 1684-1686 doi: 10.1063/1.99797
|
7 |
Pezeshki B, Thomas D, Harris J S Jr. Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators. Applied Physics Letters , 1990, 57(15): 1491-1493 doi: 10.1063/1.103373
|
8 |
Bar-Joseph I, Sucha G, Miller D A B, Chemla D S, Miller B I, Koren U. Self-electro-optic effect device and modulation convertor with InGaAs/InP multiple quantum wells. Applied Physics Letters , 1988, 52(4): 51-53
|
9 |
Goossen K W, Yan R H, Cunningham J E, Jan W Y. AlxGa1-xAs-AIAs quantum well surface-normal electro absorption modulators operating at visible wavelengths. Applied Physics Letters , 1991, 59(15): 1829-1831 doi: 10.1063/1.106212
|
10 |
Pezeshki B, Lord S M, Boykin T B, Shoop B L, Harris J S Jr. AlGaAs/AlAs QW Modulator for 6328 ? Operation. Electronics Letters , 1991, 27(21): 1971-1973 doi: 10.1049/el:19911221
|
11 |
Kuo Y H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A B, Harris J S. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature , 2005, 437(7063): 1334-1336 doi: 10.1038/nature04204 pmid:16251959
|
12 |
Kuo Y H, Lee Y K, Ge Y S, Ren S, Roth J E, Kamins T I, Miller D A B, Harris J S. Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE Journal of Selected Topics in Quantum Electronics , 2006, 12(6): 1503-1513
|
13 |
Miller D A B. Rationale and challenges for optical interconnects to electronic chips. In: Proceedings of the IEEE , 2000, 88(6): 728-749 doi: 10.1109/5.867687
|
14 |
Kibar O, Van Blerkom D A, Fan C, Esener S C. Power minimization and technology comparisons for digital free-space ptoelectronic interconnections. Journal of Lightwave Technology , 1999, 17(4): 546-555 doi: 10.1109/50.754783
|
15 |
Cho H, Kapur P, Saraswat K C. Power comparison between high speed electrical and optical interconnects for interchip communication. Journal of Lightwave Technology , 2004, 22(9): 2021-2033 doi: 10.1109/JLT.2004.833531
|
16 |
Park J S, Karunasiri R P G, Wang K L. Observation of large Stark shift in GexSi1-x/Si multiple quantum wells. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures , 1990, 8(2): 217-220 doi: 10.1116/1.584813
|
17 |
MacFarlane G G, McLean T P, Quarrington J E, Roberts V. Fine structure in the absorption-edge spectrum of Ge. Physical Review , 1957, 108(6): 1377-1383 doi: 10.1103/PhysRev.108.1377
|
18 |
Dash W C, Newman R. Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Physical Review , 1955, 99(4): 1151-1155 doi: 10.1103/PhysRev.99.1151
|
19 |
Kane E O. Band structure of indium antimonide. Journal of Physics and Chemistry of Solids , 1957, 1(4): 249-261 doi: 10.1016/0022-3697(57)90013-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|