Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (4) : 433-444    https://doi.org/10.1007/s12200-019-0850-4
RESEARCH ARTICLE
Improved offline multi-objective routing and wavelength assignment in optical networks
Harpreet KAUR1,2(), Munish RATTAN3
1. Research Scholar, Electronics Engineering, I.K. Gujral Punjab Technical University Jalandhar, Kapurthala, Punjab 144603, India
2. Department of Electronics and Communication, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, Punjab 140407, India
3. Department of Electronics & Communication, Guru Nanak Dev Engineering College, Ludhiana, Punjab 141006, India
 Download: PDF(979 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Optical networks act as a backbone for coming generation high speed applications. These applications demand a very high bandwidth which can be exploited with the use of wavelength division multiplexing (WDM) technology. The issue of setting light paths for the traffic demands is routing and wavelength assignment (RWA) problem. Based on the type of traffic patterns, it can be categorized as offline or online RWA. In this paper, an effective solution to offline (static) routing and wavelength assignment is presented considering multiple objectives simultaneously. Initially, the flower pollination (FP) technique is utilized. Then the problem is extended with the parallel hybrid technique with flower pollination and intelligent water drop algorithm (FPIWDA). Further, FPIWD is hybrid in parallel with simulated annealing (SA) algorithm to propose a parallel hybrid algorithm FPIWDSA. The results obtained through extensive simulation show the superiority of FPIWD as compared to FP. Moreover, the results in terms of blocking probability with respect to wavelengths and load of FPIWDSA are more propitious than FP and FPIWD.

Keywords offline      online      flower pollination (FP)      intelligent water drop (IWD)      simulated annealing (SA)      blocking probability      static      robustness      flexibility      heuristic      wavelength division multiplexing (WDM)     
Corresponding Author(s): Harpreet KAUR   
Online First Date: 05 June 2019    Issue Date: 30 December 2019
 Cite this article:   
Harpreet KAUR,Munish RATTAN. Improved offline multi-objective routing and wavelength assignment in optical networks[J]. Front. Optoelectron., 2019, 12(4): 433-444.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0850-4
https://academic.hep.com.cn/foe/EN/Y2019/V12/I4/433
Fig.1  Flowcharts of hybrid FPIWD algorithm
Fig.2  Flowchart of hybrid FPIWDSA algorithm
average (%) / stdev (%)
20 nodes network 14 nodes network
B.P w.r.t wavelength 79.88 / 0.55 72.87 / 0.53
fmin −107.3 / 0.31 −98.5 / 0.49
Tab.1  Blocking probability w.r.t wavelength and minimum fitness using flower pollination.
average (%) / stdev (%)
B.P w.r.t load (FP) B.P w.r.t load (FPIWD)
50.53 / 1.2 35.6 / 0.24
80.58 / 2.6 38.95 / 0.14
94.24 / 0.72 39.65 / 0.03
96.93 / 0.51 39.86 / 0.02
Tab.2  Optimum variables obtained with FPIWD for 20 nodes network
average (%) / stdev (%)
B.P w.r.t load (FP) B.P w.r.t load (FPIWD)
38.22 / 2.19 26.97 / 0.27
70.94 / 1.6 28.96/ 0.049
88.45 / 0.89 29.39 / 0.019
94.84 / 0.43 29.52 / 0.016
Tab.3  Optimum variables obtained with FPIWD for 14 nodes network
average (%) / stdev (%)
20 nodes network 14 nodes network
B.P w.r.t wavelength (FP) 80.5 / 0.66 73.04 / 0.88
B.P w.r.t wavelength (FPIWD) 50.5 / 1.13 41.93 / 0.091
fmin −172 / 0.6 −153.3 / 0.77
Tab.4  Average blocking probability w.r.t wavelength for both the test networks
average (%) / stdev (%)
B.P w.r.t load (FP) B.P w.r.t load (FPIWD) B.P w.r.t load(FPIWDSA)
51.65 / 2.2 35.77 / 0.37 1 / 0
81.18 / 1.6 38.95 / 0.144 9.5 / 0.8
94.28 / 0.7 39.66 / 0.026 12.6 / 1.46
96.91 / 0.48 39.84 / 0.022 39.6 / 0.037
Tab.5  Optimum variables obtained with FPIWDSA for 20 nodes network
average (%) / stdev (%)
B.P w.r.t load (FP) B.P w.r.t load (FPIWD) B.P w.r.t load(FPIWDSA)
39.54 / 1.59 27.16 / 0.18 0 / 0
68.94 / 2.43 28.862 / 0.13 28.9 / 0.066
87.91 / 0.91 29.377 / 0.017 29.377 / 0.017
94.47 / 0.63 29.52 / 0.021 29.52 / 0.021
Tab.6  Optimum variables obtained with FPIWDSA for 14 nodes network
average (%) / stdev (%)
20 nodes network 14 nodes network
B.P w.r.t wavelength (FP) 80.8 / 1.3 72.7 / 0.72
B.P w.r.t wavelength (FPIWD) 50.2 / 0.13 41.8 / 0.117
B.P w.r.t wavelength (FPIWDSA) 34.8 / 0.15 33.02 / 0.071
fmin −172.4 / 0.9 −152.9 / 0.7
Tab.7  Average blocking probability w.r.t wavelength and minimum fitness with FPIWDSA
Fig.3  Blocking probability for different Erlangs load per link w.r.t connection requests with shortest path first fit algorithm, FP, FPIWD and FPIWDSA for 20 nodes network
Fig.4  Blocking probability for different Erlangs load per link w.r.t connection requests with shortest path first fit algorithm, FP, FPIWD and FPIWDSA for 14 nodes network
Fig.5  Blocking probability w.r.t load with all algorithms for 20 nodes network
Fig.6  Blocking probability w.r.t wavelength count with all algorithms for 20 nodes network
Fig.7  Blocking probability w.r.t load with all algorithms for 14 nodes network
Fig.8  Blocking probability w.r.t wavelength count with all algorithms for 14 nodes network
1 C S R Murthy, M Gurusamy. WDM Optical Networks: concepts, Design, and Algorithms, Singapore: Prentice-hall, 2002, 1–15
2 J Berthold, A A M Saleh, L Blair, J M Simmons. Optical networking: past, present, and future. Journal of Lightwave Technology, 2008, 26(9): 1104–1118
https://doi.org/10.1109/JLT.2008.923609
3 M Gavanelli, M Nonato, A Peano, D Bertozzi. Logic programming approaches for routing fault-free and maximally parallel wavelength-routed optical networks on chip. Theory and Practice of Logic Programming, 2017, 17(5–6): 800–818
https://doi.org/10.1017/S1471068417000424
4 S Singh. Performance comparison of optical network topologies in the presence of optimized semiconductor optical amplifiers. Journal of Optical Communications and Networking, 2009, 1(4): 313–323
https://doi.org/10.1364/JOCN.1.000313
5 G Kaur, M L Singh. Effect of four-wave mixing in WDM optical fibre systems. Optik, 2009, 120(6): 268–273
https://doi.org/10.1016/j.ijleo.2007.08.007
6 H C Lin, S H Wang, C P Tsai. Traffic intensity based fixed alternate routing in all optical WDM networks. In: Proceedings of IEEE ICC’06. Istanbul: IEEE, 2006, 2439–2446
https://doi.org/10.1109/ICC.2006.255146
7 H Zang, J P Jue, B Mukherjee. A review of routing and wavelength assignment approaches for wavelength routed optical WDM network. Optical Networks Magazine, 2000, 1: 47–60
8 I Chlamtac, A Ganz, G Karmi. Light path communications: an approach to high bandwidth optical WAN’s. IEEE Transactions on Communications, 1992, 40(7): 1171–1182
https://doi.org/10.1109/26.153361
9 H Zang, J P Jue, L Sahasrabuddhe, R Ramamurthy, B Mukherjee. Dynamic Light path establishment in wavelength routed WDM network. IEEE Communications Magazine, 2001, 39(9): 100–108
https://doi.org/10.1109/35.948897
10 K Bala, T E Stern, K Bala. Algorithms for routing in a linear light wave network. In: Proceedings of IEEE Infocom’91. Bal Harbour: IEEE, 1991, 1–9
https://doi.org/10.1109/INFCOM.1991.147477
11 A Wason, R S Kaler. Generic routing and wavelength assignment algorithm for a wavelength-routed WDM Network. Optik (Stuttgart), 2011, 122(12): 1100–1106
https://doi.org/10.1016/j.ijleo.2010.06.048
12 T Chap, X Wang, S Xu, Y Tanaka. Link-disjoint routing algorithms with link-disjoint degree and resource utilization concern in translucent WDM optical networks. In: Proceedings of IEEE ICACT’2011. Seoul: IEEE, 2011, 357–362
13 L Guo, X Wang, W Ji, W Hou, T Wu, F Jin. A new waveband switching routing algorithm in WDM optical networks. In: Proceedings of IEEE ICACT’08. Gangwon-Do: IEEE, 2008, 2151–2154
https://doi.org/10.1109/ICACT.2008.4494215
14 A Ebrahimzadeh, A G Rahbar, B Alizadeh. Binary quadratic programming formulation for routing and wavelength assignment problem in all-optical WDM networks. Optical Switching and Networking, 2013, 10(4): 354–365
https://doi.org/10.1016/j.osn.2013.05.002
15 K Christodoulopoulos, K Manousakis, E Varvarigos. Offline routing and wavelength assignment in transparent WDM networks. IEEE/ACM Transactions on Networking, 2010, 18(5): 1557–1570
https://doi.org/10.1109/TNET.2010.2044585
16 P Leesutthipornchai, C Charnsripinyo, N Wattanapongsakorn. Solving multi-objective routing and wavelength assignment in WDM network using hybrid evolutionary computation approach. Computer Communications, 2010, 33(18): 2246–2259
https://doi.org/10.1016/j.comcom.2010.07.029
17 J Crichigno, C Xie, W Shu, M Y Wu, N A Ghani. Multiobjective approach for throughput optimization and traffic engineering in WDM networks. In: Proceedings of IEEE Forty-Third Asilomar Conference on Signals, Systems and Computers. Pacific Grove: IEEE, 2009, 1043–1047
18 Suk Singh, Sur Singh. A hybrid WDM ring–tree topology delivering efficient utilization of bandwidth over resilient infrastructure. Photonic Network Communications, 2018, 35(3): 325–334
https://doi.org/10.1007/s11107-017-0755-3
19 D Bisbal, I Miguel, F González, J Blas, J C Aguado, P Fernández, J Durán, R Durán, R M Lorenzo, E J Abril, M López. Dynamic routing and wavelength assignment in optical networks by means of genetic algorithms. Journal of Photonic Network Communication, 2004, 7(1): 43–58
https://doi.org/10.1023/A:1027401202391
20 T K Ramesh, N A Lakshmi, A Madhu, K S Ready, P R Vaya. A proactive and self-regulated ant based RWA protocol for all optical WDM networks. In: Proceedings of IEEE International Conference on Process Automation Control and Computing. Coimbatore: IEEE, 2011, 1–5
https://doi.org/10.1109/PACC.2011.5978978
21 M T Chen, B M T Lin, S S Tseng. Ant colony optimization for dynamic routing and wavelength Assignment in WDM networks with sparse wavelength conversion. Journal of Engineering Applications of Artificial Intelligence, 2011, 24(2): 295–305
https://doi.org/10.1016/j.engappai.2010.05.010
22 J Triay, C Cervello-Pastor. An ant based algorithm for distributed routing and wavelength assignment in dynamic optical networks. IEEE Journal on Selected Areas in Communications, 2010, 28(4): 542–552
https://doi.org/10.1109/JSAC.2010.100504
23 S H Ngo, X Jiang, S Horiguchi. An ant based approach for dynamic RWA in optical WDM networks. Journal of Photonic Network Communications, 2006, 11(1): 39–48
https://doi.org/10.1007/s11107-006-5322-2
24 V M Aragon, R J Miguel, N Merayo, J C Agerado, P Fernadez, R M Lorenzo, E A Abril. New algorithm for the distributed RWA problem in WDM networks using ant colony optimization. In: Tomkos I, Neri F, Solé Pareta J, Masip Bruin X, Sánchez Lopez S, eds. Optical Network Design and Modeling. Berlin: Springer Heidelberg, 2007, 299–308
25 Y S Kavian, A Rashedi, A Mahani, Z Ghassemlooy. Routing and wavelength assignment in optical networks using artificial bee colony algorithm. Optik, 2013, 124(12): 1243–1249
https://doi.org/10.1016/j.ijleo.2012.03.022
26 A Hassan, C Phillips. Chaotic particle swarm optimization for dynamic routing and wavelength assignment in all optical WDM networks. In: Proceedings of IEEE International Conference on Signal Processing and Communication System. Omaha: IEEE, 2009
https://doi.org/10.1109/ICSPCS.2009.5306372
27 F Lezama, G Castañón, A M Sarmiento. Routing and wavelength assignment in all optical networks using differential evolution optimization. Photonic Network Communications, 2013, 26(2–3): 103–119
https://doi.org/10.1007/s11107-013-0413-3
28 Z Bayraktar, M Komurcu, J A Bossard, D H Werner. The wind-driven optimization technique and its application in electromagnetics. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2745–2757
https://doi.org/10.1109/TAP.2013.2238654
29 X S Yang. Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N, eds. Unconventional Computation and Natural Computation. Berlin: Springer Heidelberg, 2012, 240–249
https://doi.org/10.1007/978-3-642-32894-7_27
30 S Kirkpatrick, C D Gelatt Jr, M P Vecchi. Optimization by simulated annealing. Science, 1983, 220(4598): 671–680
https://doi.org/10.1126/science.220.4598.671 pmid: 17813860
31 H S Hosseini. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. International Journal of Bio-inspired Computation, 2009, 1(1/2): 71–79
https://doi.org/10.1504/IJBIC.2009.022775
32 A Wason, R S Kaler. Wavelength assignment problem in optical WDM networks. International Journal of Computer Science and Network Security, 2007, 7(4): 27–31
33 K Balasubramani, K A Marcus. Study on flower pollination algorithm and its applications. International Journal of Application or Innovation in Engineering & Management, 2014, 3(11): 230–235
34 D K Tyagi, V K Chaubey, P Khandelwal. Routing and wavelength assignment in WDM network using IWD based algorithm. In: Proceedings of IEEE International Conference on Computing, Communication, and Automation (ICCCA). Noida: IEEE, 2016
https://doi.org/10.1109/ccaa.2016.7813943
35 H S Hosseini. Problem solving by intelligent water drops. In: IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007, 3226–3231
36 A K Yadav, A Singh, A Azeem, O P Rahi. Application of simulated annealing and genetic algorithm in engineering application. International Journal of Advances in Engineering and Technology, 2011, 1(2): 81–85
37 Z Fang, X Gu, J Chen. Improved heuristic flower pollination algorithm for solving multi-dimensional knapsack problems. In: Proceedings of IEEE international conference on Intelligent Computation Technology and Automation. Changsha: IEEE, 2017, 33–38
https://doi.org/10.1109/ICICTA.2017.15
38 M Abdel-Baset, I Hezam. hybrid flower pollination algorithm for engineering optimization problems. International Journal of Computers and Applications, 2016, 140(12): 10–23
https://doi.org/10.5120/ijca2016909119
39 S Selvarani, G Sadhasivam. An intelligent water drop algorithm for optimizing task scheduling in grid environment. International Arab Journal of Information Technology, 2016, 13(6): 627–634
40 A Askarzadeh, L D S Coelho, C E Klein, V C Mariani. A population based simulated annealing algorithm for global optimization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics(SMC). Budapest: IEEE, 2016, 004626–004633
https://doi.org/10.1109/SMC.2016.7844961
41 A H Mantawy, Y L Abdel-Magid, S Z Selim. A simulated annealing algorithm for unit commitment. IEEE Transactions on Power Systems, 1998, 13(1): 197–204
https://doi.org/10.1109/59.651636
[1] Jack W. ZUBER, Chao ZHANG. Nonlinear effects in topological materials[J]. Front. Optoelectron., 2021, 14(1): 99-109.
[2] Md. Mostafa FARUK, Nazifa Tabassum KHAN, Shovasis Kumar BISWAS. Highly nonlinear bored core hexagonal photonic crystal fiber (BC-HPCF) with ultra-high negative dispersion for fiber optic transmission system[J]. Front. Optoelectron., 2020, 13(4): 433-440.
[3] Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser[J]. Front. Optoelectron., 2020, 13(2): 149-155.
[4] Huangjia LI, Boqin MA. Research development on fabrication and optical properties of nonlinear photonic crystals[J]. Front. Optoelectron., 2020, 13(1): 35-49.
[5] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[6] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[7] Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero CORTÉS, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo CINO, Sai Tak CHU, Brent LITTLE, David MOSS, Lucia CASPANI, José AZAÑA, Michael KUES, Roberto MORANDOTTI. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Front. Optoelectron., 2018, 11(2): 134-147.
[8] Xinhua ZHU, Mengfan CHENG, Lei DENG, Xingxing JIANG, Deming LIU. Extracting the time delay signature of coupled optical chaotic systems by mutual statistical analysis[J]. Front. Optoelectron., 2017, 10(4): 378-387.
[9] Suling LI. Double-folding paper-based generator for mechanical energy harvesting[J]. Front. Optoelectron., 2017, 10(1): 38-44.
[10] Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
[11] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[12] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[13] Baoming LI,Enkai PENG,Leilei YE,Zhiyin WU. Synthesis and optical properties of soluble low bandgap poly (pyrrole methine) with alkoxyl substituent[J]. Front. Optoelectron., 2016, 9(1): 99-105.
[14] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
[15] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed