a-T3 systems," /> a-T3 systems,"/> a-T3 systems,"/>
Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (1) : 99-109    https://doi.org/10.1007/s12200-020-1088-x
REVIEW ARTICLE
Nonlinear effects in topological materials
Jack W. ZUBER, Chao ZHANG()
School of Physics, University of Wollongong, New South Wales 2522, Australia
 Download: PDF(1045 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Materials, where charge carriers have a linear energy dispersion, usually exhibit a strong nonlinear optical response in the absence of disorder scattering. This nonlinear response is particularly interesting in the terahertz frequency region. We present a theoretical and numerical investigation of charge transport and nonlinear effects, such as the high harmonic generation in topological materials including Weyl semimetals (WSMs) and a-T3 systems. The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix. We show that the nonlinear response is strongly dependent on temperature and topological parameters, such as the Weyl point (WP) separation b and Berry phase φB. A finite spectral gap opening can further modify the nonlinear effects. Under certain parameters, universal behaviors of both the linear and nonlinear response can be observed. Coupled with experimentally accessible critical field values of 104 105V/m, our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.

Keywords terahertz      nonlinear effects      topological materials      Weyl semimetals (WSMs)      a-T3 systems')" href="#">a-T3 systems     
Corresponding Author(s): Chao ZHANG   
Just Accepted Date: 20 October 2020   Online First Date: 09 December 2020    Issue Date: 19 April 2021
 Cite this article:   
Jack W. ZUBER,Chao ZHANG. Nonlinear effects in topological materials[J]. Front. Optoelectron., 2021, 14(1): 99-109.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1088-x
https://academic.hep.com.cn/foe/EN/Y2021/V14/I1/99
Fig.1  Dispersion relation of Eq. (2) with: (a) vF?|b|?>? D: WSM phase, (b) vF?|b|?=? D: MDSM phase, and (c) vF?|b|?<? D: GSM phase. The arrows in Fig. 1(a) show two types of intraband current contributions for an electric field parallel to b
Fig.2  Dispersion relation for the a-T3 lattice. The lines on the right show two interband transitions, E-?→? E0?→? E+ and E0?→? E+ as well as one intraband transition E+?→? E+
Fig.3  Band gap dependence of the first- and third-order conductivities of WSM with μ?=?80?meV, T?=?300?K, and ω?=?1?THz for the field directed parallel to b
Fig.4  Temperature dependence of the first- and third-order conductivities of WSM with µ?=?80?meV, D?=?53?meV, and w?=?1?THz for the field directed parallel to b?=? bxx ^?=?0.8?×?108 x^
Fig.5  Band gap dependence of the anisotropy of (a) first-order conductivities, (b) third-order conductivities, and (c) critical fields in WSM with µ?=?80?meV, T?=?300?K, and w?=?1?THz for a field directed parallel to b?=? bxx ^?=?0.8?×?108? x^
Fig.6  Temperature dependence of the anisotropy of (a) first-order conductivities, (b) third-order conductivities, and (c) critical fields in WSM with µ?=?80?meV, D?=?53?meV, and w?=?1?THz
Fig.7  First-order conductivity of the α- T3 lattice with (a) a?=?0, (b) a?=?0.5, and (c) a?=?1. In each graph, a?=?0.0142?nm, t?=?3?eV, and µ?=?1?meV are the original values. The µ?→?∞ values are 100?meV (Fig. 7(a)) and 20?meV (Figs. 7(b) and 7(c)); the T>?0 value is 4?K in each graph, and the D>?0 values are 0.5?meV ((Fig. 7(a)), 1?meV (Fig. 7(b)), and 2?meV (Fig. 7(c))
Fig.8  Third-order conductivity in the α- T3 lattice for different Berry phases with a?=?0.0142?nm, τ1?=? τ2?=?3?eV, and µ?=?1?meV
Fig.9  Frequency dependence of the critical field in the α -T3 lattice for different Berry phases with a?=?0.0142?nm, τ1?=? τ2?=?3?eV, and µ?=?1?meV
Fig.10  Berry phase dependence of the critical field in the α -T3 lattice for different frequencies with a?=?0.0142?nm, τ1?=? τ2?=?3?eV, and µ?=?1?meV
1 Y Ando. Topological insulator materials. Journal of the Physical Society of Japan, 2013, 82(10): 102001
https://doi.org/10.7566/JPSJ.82.102001
2 T Otsuji, V Popov, V Ryzhii. Active graphene plasmonics for terahertz device applications. Journal of Physics D, Applied Physics, 2014, 47(9): 094006
https://doi.org/10.1088/0022-3727/47/9/094006
3 A Bansil, H Lin, T Das. Topological band theory. Reviews of Modern Physics, 2016, 88(2): 021004
https://doi.org/10.1103/RevModPhys.88.021004
4 X L Qi, S C Zhang. Topological insulators and superconductors. Reviews of Modern Physics, 2011, 83(4): 1057–1110
https://doi.org/10.1103/RevModPhys.83.1057
5 M Z Hasan, C L Kane. Topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045–3067
https://doi.org/10.1103/RevModPhys.82.3045
6 D Reddy, L F Register, G D Carpenter, S K Banerjee. Graphene field-effect transistors. Journal of Physics D, Applied Physics, 2011, 44(31): 313001
https://doi.org/10.1088/0022-3727/44/31/313001
7 M Sanderson, S Huang, Q Bao, C Zhang. Optical conductivity of a commensurate graphene-topological insulator heterostructure. Journal of Physics D, Applied Physics, 2017, 50(38): 385301
https://doi.org/10.1088/1361-6463/aa81a7
8 T Wehling, A M Black-Schaffer, A V Balatsky. Dirac materials. Advances in Physics, 2014, 63(1): 1–76
https://doi.org/10.1080/00018732.2014.927109
9 S C Huang, M Sanderson, Y Zhang, C Zhang. High efficiency and non-Richardson thermionics in three dimensional Dirac materials. Applied Physics Letters, 2017, 111(18): 183902
https://doi.org/10.1063/1.5006277
10 R Lundgren, G A Fiete. Electronic cooling in Weyl and Dirac semimetals. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(12): 125139
https://doi.org/10.1103/PhysRevB.92.125139
11 A A Burkov, L Balents. Weyl semimetal in a topological insulator multilayer. Physical Review Letters, 2011, 107(12): 127205
https://doi.org/10.1103/PhysRevLett.107.127205 pmid: 22026796
12 S Y Xu, I Belopolski, N Alidoust, M Neupane, G Bian, C Zhang, R Sankar, G Chang, Z Yuan, C C Lee, S M Huang, H Zheng, J Ma, D S Sanchez, B Wang, A Bansil, F Chou, P P Shibayev, H Lin, S Jia, M Z Hasan. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349(6248): 613–617
https://doi.org/10.1126/science.aaa9297 pmid: 26184916
13 B Q Lv, H M Weng, B B Fu, X P Wang, H Miao, J Ma, P Richard, X C Huang, L X Zhao, G F Chen, Z Fang, X Dai, T Qian, H Ding. Experimental discovery of Weyl semimetal TaAs. Physical Review X, 2015, 5(3): 031013
https://doi.org/10.1103/PhysRevX.5.031013
14 L Lu, Z Wang, D Ye, L Ran, L Fu, J D Joannopoulos, M Soljačić. Experimental observation of Weyl points. Science, 2015, 349(6248): 622–624
https://doi.org/10.1126/science.aaa9273 pmid: 26184914
15 S Y Xu, N Alidoust, I Belopolski, Z Yuan, G Bian, T R Chang, H Zheng, V N Strocov, D S Sanchez, G Chang, C Zhang, D Mou, Y Wu, L Huang, C C Lee, S M Huang, B K Wang, A Bansil, H T Jeng, T Neupert, A Kaminski, H Lin, S Jia, M Zahid Hasan. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Physics, 2015, 11(9): 748–754
https://doi.org/10.1038/nphys3437
16 T Ouyang, H Xiao, C Tang, M Hu, J Zhong. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation. Physical Chemistry Chemical Physics, 2016, 18(25): 16709
17 T Meng, L Balents. Weyl superconductors. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(5): 054504
https://doi.org/10.1103/PhysRevB.86.054504
18 P Hosur, S A Parameswaran, A Vishwanath. Charge transport in Weyl semimetals. Physical Review Letters, 2012, 108(4): 046602
https://doi.org/10.1103/PhysRevLett.108.046602 pmid: 22400871
19 P Goswami, S Tewari. Axionic field theory of (3+1)-dimensional Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(24): 245107
https://doi.org/10.1103/PhysRevB.88.245107
20 M M Vazifeh, M Franz. Electromagnetic response of Weyl semimetals. Physical Review Letters, 2013, 111(2): 027201
https://doi.org/10.1103/PhysRevLett.111.027201 pmid: 23889433
21 N P Armitage, E J Mele, A Vishwanath. Weyl and Dirac semimetals in three-dimensional solids. Reviews of Modern Physics, 2018, 90(1): 015001
https://doi.org/10.1103/RevModPhys.90.015001
22 P E Ashby, J P Carbotte. Magneto-optical conductivity of Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(24): 245131
https://doi.org/10.1103/PhysRevB.87.245131
23 J N Fuchs. Dirac fermions in graphene and analogues: magnetic field and topological properties. 2013, arXiv:1306.0380
24 A H Castro Neto, F Guinea, N M R Peres, K S Novoselov, A K Geim. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
https://doi.org/10.1103/RevModPhys.81.109
25 N M R Peres. The transport properties of graphene: an introduction. Reviews of Modern Physics, 2010, 82(3): 2673–2700
https://doi.org/10.1103/RevModPhys.82.2673
26 S D Sarma, S Adam, E H Hwang, E Rossi. Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011, 83(2): 407–470
https://doi.org/10.1103/RevModPhys.83.407
27 P S Baireuther. Universiteit Leiden, (Doctoral dissertation). 2017
28 J S Bell, R Jackiw. A PCAC puzzle: π0→gg in the s-model. Il Nuovo Cimento, 1969, 60(1): 47–61
https://doi.org/10.1007/BF02823296
29 S L Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 1969, 177(5): 2426–2438
https://doi.org/10.1103/PhysRev.177.2426
30 D T Son, B Z Spivak. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(10): 104412
https://doi.org/10.1103/PhysRevB.88.104412
31 K Landsteiner. Anomalous transport of Weyl fermions in Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(7): 075124
https://doi.org/10.1103/PhysRevB.89.075124
32 C Shekhar, A K Nayak, Y Sun, M Schmidt, M Nicklas, I Leermakers, U Zeitler, Y Skourski, J Wosnitza, Z Liu, Y Chen, W Schnelle, H Borrmann, Y Grin, C Felser, B Yan. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Physics, 2015, 11(8): 645–649
https://doi.org/10.1038/nphys3372
33 F Wang, Y Ran. Nearly flat band with Chern number C = 2 on the dice lattice. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(24): 241103
https://doi.org/10.1103/PhysRevB.84.241103
34 D Bercioux, D F Urban, H Grabert, H Häusler. Massless Dirac-Weyl fermions in a T3 optical lattice. Physical Review A, 2009, 80(6): 063603
https://doi.org/10.1103/PhysRevA.80.063603
35 Z Liu, Z F Wang, J W Mei, Y S Wu, F Liu. Flat Chern band in a two-dimensional organometallic framework. Physical Review Letters, 2013, 110(10): 106804
https://doi.org/10.1103/PhysRevLett.110.106804 pmid: 23521279
36 M G Yamada, T Soejima, N Tsuji, D Hirai, M Dincă, H Aoki. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(8): 081102
https://doi.org/10.1103/PhysRevB.94.081102
37 N Su, W Jiang, Z Wang, F Liu. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework. Applied Physics Letters, 2018, 112(3): 033301
https://doi.org/10.1063/1.5017956
38 T Neupert, L Santos, C Chamon, C Mudry. Fractional quantum Hall states at zero magnetic field. Physical Review Letters, 2011, 106(23): 236804
https://doi.org/10.1103/PhysRevLett.106.236804 pmid: 21770534
39 J D Malcolm, E J Nicol. Analytic evaluation of Kane fermion magneto-optics in two and three dimensions. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(22): 224305
https://doi.org/10.1103/PhysRevB.94.224305
40 W Häusler. Flat-band conductivity properties at long-range Coulomb interactions. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(4): 041102
https://doi.org/10.1103/PhysRevB.91.041102
41 L Du, X Zhou, G A Fiete. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(3): 035136
https://doi.org/10.1103/PhysRevB.95.035136
42 D F Urban, D Bercioux, W Wimmer, W Häusler. Barrier transmission of Dirac-like pseudospin-one particles. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(11): 115136
https://doi.org/10.1103/PhysRevB.84.115136
43 R Shen, L B Shao, B Wang, D Y Xing. Single Dirac cone with a flat band touching on line-centered-square optical lattices. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(4): 041410
https://doi.org/10.1103/PhysRevB.81.041410
44 E Illes, E J Nicol. Klein tunneling in the α-T3 model. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(23): 235432
https://doi.org/10.1103/PhysRevB.95.235432
45 T Louvet, P Delplace, A A Fedorenko, D Carpentier. On the origin of minimal conductivity at a band crossing. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(15): 155116
https://doi.org/10.1103/PhysRevB.92.155116
46 E Illes, E J Nicol. Magnetic properties of the α-T3 model: magneto-optical conductivity and the Hofstadter butterfly. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(12): 125435
https://doi.org/10.1103/PhysRevB.94.125435
47 S K F Islam, P Dutta. Valley-polarized magnetoconductivity and particle-hole symmetry breaking in a periodically modulated α-T3 lattice. Physical Review B: Condensed Matter and Materials Physics, 2017, 96(4): 045418
https://doi.org/10.1103/PhysRevB.96.045418
48 S Shareef, Y S Ang, C Zhang. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics, 2012, 29(3): 274
https://doi.org/10.1364/JOSAB.29.000274
49 A R Wright, X G Xu, J C Cao, C Zhang. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
https://doi.org/10.1063/1.3205115
50 Y S Ang, S Sultan, C Zhang. Nonlinear optical spectrum of bilayer graphene in the terahertz regime. Applied Physics Letters, 2010, 97(24): 243110
https://doi.org/10.1063/1.3527934
51 Y S Ang, C Zhang. Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion. Journal of Physics D, Applied Physics, 2012, 45(39): 395303
https://doi.org/10.1088/0022-3727/45/39/395303
52 S A Mikhailov. Non-linear electromagnetic response of graphene. Europhysics Letters, 2007, 79(2): 27002
https://doi.org/10.1209/0295-5075/79/27002
53 S Gong, T Zhao, M Sanderson, M Hu, R Zhong, X Chen, P Zhang, C Zhang, S Liu. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime. Applied Physics Letters, 2015, 106(22): 223107
https://doi.org/10.1063/1.4922261
54 M Sanderson, Y S Ang, S Gong, T Zhao, M Hu, R Zhong, X Chen, P Zhang, C Zhang, S Liu. Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime. Applied Physics Letters, 2015, 107(20): 203113
https://doi.org/10.1063/1.4936232
55 J W Zuber, T Zhao, S Gong, M Hu, R B Zhong, C Zhang, S G Liu. Tunable strong photo-mixing in Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2020, 101(8): 085307
https://doi.org/10.1103/PhysRevB.101.085307
56 C Zhu, F Wang, Y Meng, X Yuan, F Xiu, H Luo, Y Wang, J Li, X Lv, L He, Y Xu, J Liu, C Zhang, Y Shi, R Zhang, S Zhu. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nature Communications, 2017, 8(1): 14111
https://doi.org/10.1038/ncomms14111 pmid: 28106037
57 S Huang, M Sanderson, J Tian, Q Chen, F Wang, C Zhang. Hot carrier relaxation in three dimensional gapped Dirac semi-metals. Journal of Physics D, Applied Physics, 2018, 51(1): 015101
https://doi.org/10.1088/1361-6463/aa994b
58 C Hwang, D A Siegel, S K Mo, W Regan, A Ismach, Y Zhang, A Zettl, A Lanzara. Fermi velocity engineering in graphene by substrate modification. Scientific Reports, 2012, 2(1): 590
https://doi.org/10.1038/srep00590
59 E Illes, J P Carbotte, E J Nicol. Hall quantization and optical conductivity evolution with variable Berry phase in the α-T3 model. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(24): 245410
https://doi.org/10.1103/PhysRevB.92.245410
60 L Chen, J W Zuber, Z Ma, C Zhang. Nonlinear optical response of the α-T3 model due to the nontrivial topology of the band dispersion. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(3): 035440
https://doi.org/10.1103/PhysRevB.100.035440
61 B Dóra, J Kailasvuori, R Moessner. Lattice generalization of the Dirac equation to general spin and the role of the flat band. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(19): 195422
https://doi.org/10.1103/PhysRevB.84.195422
62 L Tapasztó, G Dobrik, P Nemes-Incze, G Vertesy, P Lambin, L P Biró. Tuning the electronic structure of graphene by ion irradiation. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(23): 233407
https://doi.org/10.1103/PhysRevB.78.233407
[1] Dixiang SHAO, Chen YAO, Zhanglong FU, Wenjian WAN, Ziping LI, Juncheng CAO. Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation[J]. Front. Optoelectron., 2021, 14(1): 94-98.
[2] Elchin ISGANDAROV, Xavier ROPAGNOL, Mangaljit SINGH, Tsuneyuki OZAKI. Intense terahertz generation from photoconductive antennas[J]. Front. Optoelectron., 2021, 14(1): 64-93.
[3] Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Front. Optoelectron., 2021, 14(1): 37-63.
[4] Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application[J]. Front. Optoelectron., 2021, 14(1): 4-36.
[5] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[6] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[7] Feidi XIANG, Kejia WANG, Zhengang YANG, Jinsong LIU, Shenglie WANG. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Front. Optoelectron., 2018, 11(4): 413-418.
[8] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[9] Wenshu MA, Qi LI, Jianye LU, Liyu SUN. De-noising research on terahertz holographic reconstructed image based on weighted nuclear norm minimization method[J]. Front. Optoelectron., 2018, 11(3): 267-274.
[10] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[11] Fabrizio BUCCHERI, Pingjie HUANG, Xi-Cheng ZHANG. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas[J]. Front. Optoelectron., 2018, 11(3): 209-244.
[12] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[13] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[14] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[15] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed