Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (1) : 94-98    https://doi.org/10.1007/s12200-020-1083-2
RESEARCH ARTICLE
Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation
Dixiang SHAO, Chen YAO, Zhanglong FU, Wenjian WAN, Ziping LI, Juncheng CAO()
Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
 Download: PDF(655 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we presented single mode terahertz quantum cascade lasers (THz QCLs) with sampled lateral grating emitting approximately 3.4 THz. Due to strong mode selection, the implementation of sampled lateral grating on THz QCL ridges can result in stable single longitudinal mode emission with a side-mode suppression ratio larger than 20 dB. The measured peak power of the grating laser is improved by about 11.8% compared to the power of devices with uniform distributed feedback gratings. Furthermore, the far-field pattern of the presented device is uninfluenced by grating structures.

Keywords terahertz (THz)      quantum cascade laser (QCL)      sampled lateral grating     
Corresponding Author(s): Juncheng CAO   
Just Accepted Date: 16 October 2020   Online First Date: 19 November 2020    Issue Date: 19 April 2021
 Cite this article:   
Dixiang SHAO,Chen YAO,Zhanglong FU, et al. Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation[J]. Front. Optoelectron., 2021, 14(1): 94-98.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1083-2
https://academic.hep.com.cn/foe/EN/Y2021/V14/I1/94
Fig.1  (a) Schematic diagram of sampled lateral grating THz QCLs. (b) Computed two-dimensional fundamental mode profile of 120 μm-wide waveguide. (c) Top view of the fabricated device
Fig.2  (a) Power-current (P-I) characteristics of sampled lateral grating THz QCLs measured in pulsed mode at 10 K. Voltage-current characteristics of the device with a grating duty cycle of 1/2 is also shown. (b) Enlarged view of power-current (P-I) characteristics for different sample grating THz QCLs. (c) Emission spectrum of the THz QCL with d = 1
Fig.3  (a) Emission spectra of sampled lateral grating THz QCLs with d = 1/2 and an F-P laser at injection currents near the rollover of power-current (P-I) curves. (b) Emission spectra of sampled lateral grating THz QCLs with d = 1/3 and 1/2 in pulsed mode at injection currents around 2.1 A at 10 K
Fig.4  (a) Schematic diagram of the scanning angles used in far-field measurements. (b) Measured two-dimensional far-field pattern of the sampled lateral grating THz QCL at a drive current of 1.86 A with d = 1/2. FWHM is about 44°(θ) ×40°(Φ)
1 S Kumar. Recent progress in terahertz quantum cascade lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38–47
https://doi.org/10.1109/JSTQE.2010.2049735
2 T T Lin, K Wang, L Wang, H Hirayama. High output power THz quantum cascade lasers and their temperature dependent performance. Journal of Infrared and Millimeter Waves, 2018, 37(5): 513–518
3 B S Williams, S Kumar, Q Hu, J L Reno. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. Optics Letters, 2005, 30(21): 2909–2911
https://doi.org/10.1364/OL.30.002909 pmid: 16279466
4 L Mahler, A Tredicucci, R Köhler, F Beltram, H E Beere, E H Linfield, D A Ritchie. High performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Applied Physics Letters, 2005, 87(18): 181101
https://doi.org/10.1063/1.2120901
5 M Wienold, A Tahraoui, L Schrottke, R Sharma, X Lü, K Biermann, R Hey, H T Grahn. Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers. Optics Express, 2012, 20(10): 11207–11217
https://doi.org/10.1364/OE.20.011207 pmid: 22565743
6 M I Amanti, M Fischer, G Scalari, M Beck, J Faist. Low-divergence single-mode terahertz quantum cascade laser. Nature Photonics, 2009, 3(10): 586–590
https://doi.org/10.1038/nphoton.2009.168
7 C Yao, T H Xu, W J Wan, H Li, J C Cao. Single-mode tapered terahertz quantum cascade lasers with lateral gratings. Solid-State Electronics, 2016, 122: 52–55
https://doi.org/10.1016/j.sse.2016.04.008
8 H Li, J M Manceau, A Andronico, V Jagtap, C Sirtori, L H Li, E H Linfield, A G Davies, S Barbieri. Coupled-cavity terahertz quantum cascade lasers for single mode operation. Applied Physics Letters, 2014, 104(24): 241102
https://doi.org/10.1063/1.4884056
9 B G Lee, M A Belkin, C Pflugl, L Diehl, H A Zhang, R M Audet, J MacArthur, D P Bour, S W Corzine, G E Hofler, F Capasso. DFB quantum cascade laser arrays. IEEE Journal of Quantum Electronics, 2009, 45(5): 554–565
https://doi.org/10.1109/JQE.2009.2013175
10 T S Mansuripur, S Menzel, R Blanchard, L Diehl, C Pflügl, Y Huang, J H Ryou, R D Dupuis, M Loncar, F Capasso. Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors. Optics Express, 2012, 20(21): 23339–23348
https://doi.org/10.1364/OE.20.023339 pmid: 23188297
11 S Slivken, S Sengupta, M Razeghi. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier. Applied Physics Letters, 2015, 107(25): 251101
https://doi.org/10.1063/1.4938005
12 V Jayaraman, Z M Chuang, L A Coldren. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE Journal of Quantum Electronics, 1993, 29(6): 1824–1834
https://doi.org/10.1109/3.234440
13 L Li, L Chen, J Zhu, J Freeman, P Dean, A Valavanis, A G Davies, E H Linfield. Terahertz quantum cascade lasers with>1 W output powers. Electronics Letters, 2014, 50(4): 309–311
https://doi.org/10.1049/el.2013.4035
14 V Jayaraman, Z M Chuang, L A Coldren. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE Journal of Quantum Electronics, 1993, 29(6): 1824–1834
https://doi.org/10.1109/3.234440
[1] Elchin ISGANDAROV, Xavier ROPAGNOL, Mangaljit SINGH, Tsuneyuki OZAKI. Intense terahertz generation from photoconductive antennas[J]. Front. Optoelectron., 2021, 14(1): 64-93.
[2] Qi JIN, Yiwen E, Xi-Cheng ZHANG. Terahertz aqueous photonics[J]. Front. Optoelectron., 2021, 14(1): 37-63.
[3] Yan ZHANG, Kaixuan LI, Huan ZHAO. Intense terahertz radiation: generation and application[J]. Front. Optoelectron., 2021, 14(1): 4-36.
[4] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[5] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[6] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[7] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[8] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[9] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
[10] Jingle LIU,Xi-Cheng ZHANG. Terahertz radiation-enhanced-emission-of-fluorescence[J]. Front. Optoelectron., 2014, 7(2): 156-198.
[11] I-Chen HO,Xi-Cheng ZHANG. Application of broadband terahertz spectroscopy in semiconductor nonlinear dynamics[J]. Front. Optoelectron., 2014, 7(2): 220-242.
[12] Tongfu SU, Bin YU, Pengyu HAN, Guozhong ZHAO, Changrong GONG. Characterization of spectra of lignin from midribs of tobacco at THz frequencies[J]. Front Optoelec Chin, 2009, 2(3): 244-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed