Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (2) : 156-198    https://doi.org/10.1007/s12200-014-0396-4
REVIEW ARTICLE
Terahertz radiation-enhanced-emission-of-fluorescence
Jingle LIU1,*(),Xi-Cheng ZHANG2,*()
1. Bloomberg Tradebook LLC, 120 Park Ave, New York, NY 10017, USA
2. The Institute of Optics, University of Rochester, Rochester, NY 14627-0186, USA
 Download: PDF(2151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Terahertz (THz) wave science and technology have been found countless applications in biomedical imaging, security screening, and non-destructive testing as they approach maturity. However, due to the challenge of high ambient moisture absorption, the development of remote open-air broadband THz spectroscopy technology is lagging behind the compelling need that exists in homeland security, astronomy and environmental monitoring. Furthermore, the underlying physical mechanisms behind the interaction between the THz wave and laser-induced plasma which responds strongly to electromagnetic waves have not been fully understood.

This review aims to explain the light-plasma interaction at THz frequencies within a semiclassical framework along with experimental study of the femtosecond-laser-induced nitrogen plasma fluorescence under the illumination of single-cycle THz pulses. The results indicate that THz-radiation-enhanced-emission-of-fluorescence (THz-REEF) is dominated by electron kinetics in the THz field and the electron-impact excitation of gas molecules/ions. The information of the time-dependent THz field can be recovered from the measured time-resolved THz-REEF from single-color laser induced plasma with the help of the bias as local oscillator. The calculations and experimental verification lead to complete understanding of the science behind these effects and push forward to extend their capabilities in related applications such as remote THz sensing, plasma diagnostics and ultrafast photoluminescence modulation.

Systematic studies in selected gases including neon, argon, krypton, xenon, methane (CH4), ethane (C2H6), propane (C3H8), and n-butane (C4H10) gases were performed to obtain an improved understanding of the THz-REEF. The dependences of the enhanced fluorescence on the THz field, laser excitation intensity, gas pressure, and intrinsic atomic properties were experimentally characterized. Both narrow line emission and broad continuum emission of the gas plasma were enhanced by the THz field. Their fluorescence enhancement ratios and time-resolved enhanced fluorescence were largely dependent on the scattering cross section and ionization potential of atoms.

For the first time, we demonstrated a novel ‘all-optical’ technique of broadband THz wave remote sensing by coherently manipulating the fluorescence emission from asymmetrically ionized gas plasma that interacted with THz waves. By studying the ultrafast electron dynamics under the single cycle THz radiation, we found that the fluorescence emission from laser-induced air plasma was highly dependent on the THz electric field and the symmetry of the electron drift velocity distribution created by two-color laser fields. The time-resolved THz-REEF can be tailored by switching the relative two-color phase and laser polarizations. Owing to the high atmospheric transparency and omni-directional emission pattern of fluorescence, this technique can be used to measure THz pulses at standoff distances with minimal water vapor absorption and unlimited directionality for optical signal collection. The coherent THz wave detection at a distance of 10 m had been demonstrated. The combination of this method and previously demonstrated remote THz generation would eventually make remote THz spectroscopy available.

We also introduced a unique plasma diagnostic method utilizing the THz-wave-enhanced fluorescence emission from the excited atoms or molecules. The electron relaxation time and plasma density were deduced through applying the electron impact excitation/ionization and electron-ion recombination processes to the measured time-delay-dependent enhanced fluorescence. The electron collision dynamics of nitrogen plasma excited at different gas pressures and laser pulse energies were systematically investigated. This plasma diagnostic method offers picosecond temporal resolution and is capable of omni-directional optical signal collection.

The ultrafast quenching dynamics of laser-pulse-induced photoluminescence in semiconductors under the radiation of single-cycle THz pulses was studied. It was found that the quenching in both cadmium telluride (CdTe) and gallium arsenide (GaAs) was linearly proportional to the intensity of incident THz waves and reaches up to 17% and 4% respectively at the peak intensity of 13 MW/cm2. The THz-wave-induced heating of the carriers and lattice and the subsequent decreased efficiency of photocarrier generation and recombination were most likely to be responsible for the quenching. This is potentially useful for the applications of a non-invasive ultrafast light modulator for photoluminescence devices with picoseconds switching time in the fields of the light-emitting devices and optical communication.

Keywords terahertz (THz)      fluorescence      optical sensing      gas plasma     
Corresponding Author(s): Jingle LIU   
Issue Date: 25 June 2014
 Cite this article:   
Jingle LIU,Xi-Cheng ZHANG. Terahertz radiation-enhanced-emission-of-fluorescence[J]. Front. Optoelectron., 2014, 7(2): 156-198.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0396-4
https://academic.hep.com.cn/foe/EN/Y2014/V7/I2/156
Fig.1  Electromagnetic spectrum. THz frequency falls between microwave and visible bands
Fig.2  (a) Optical image of a 600 mm × 600 mm panel of foam insulation on a metal substrate. There exist some defects hidden underneath the surface; (b) THz image of the same panel. Black circles are the embedded defects [6]
Fig.3  (a) Internal structure of a human tooth mapped out by THz imaging; (b) THz image of a human hand; (c) optical image of a person carrying a concealed weapon; (d) THz image of the same person (http://thznetwork.net/)
Fig.4  Schematics of the experimental setup of broadband THz generation and detection using gases. HV, high voltage; BBO, beta barium borate. Filter, 400 nm interference filter. Detector, photo-multiplier tube (Courtesy of Jianming Dai)
Fig.5  (a) Typical time-domain waveform of a THz pulse using air generation and air detection. A 35 fs ultrashort laser pulse is used for Thz generation and detection; (b) corresponding THz spectrum in the frequency domain. ABCD, air-biased-coherent-detection (Courtesy of I-Chen Ho)
Fig.6  (a) Schematic of the experimental setup for remote THz wave generation from laser-induced plasma in the ambient air. PC, phase compensator; M1, convex spherical mirror used to expand the optical beams; M2, concave spherical mirror used to remotely focus optical beams; (b) THz waveforms generated in ambient air at distances of 6.5, 10 and 17 m respectively. 1 mm thick ZnTe crystal was used as sensor (Courtesy of Jianming Dai)
Fig.7  Illustration of the frequent electron-molecules collisions within THz pulse duration. Small circles are electrons and big circles are molecules. Arrow represents the direction of electron motion
Fig.8  Illustration of the frequency of the electron-molecules collisions within the THz pulse duration (a) at extreme low pressure and (b) at extreme high pressure
Fig.9  Schematic of THz-REEF experiment. Red beam is 800 nm laser. Blue beam is the THz generated from the LiNbO3 prism. Purple beam is the fluorescence emission from the laser-induced plasma. Inset, the enlarged image of the LiNbO3 prism
Fig.10  (a) Schematics of the interaction between the THz wave and laser-induced plasma; (b) measured fluorescence spectra versus THz field as td=-1?ps; (c) measured quadratic THz field dependence of 357 nm fluorescence emission line as td=-1?ps. Inset: The isotropic emission pattern of THz-REEF
Fig.11  (a) Time-resolved THz-REEF ΔIFL(td) and THz field ETHz(td); (b) time-resolved ΔIFL(td), ETHz(td), dΔIFL(td)/dtd and ETHZ2(td) on the rising edge in the expanded scale of (a). All curves are normalized and offset for clarity
Fig.12  THz pulse enhanced fluorescence in nitrogen at a pressure range of 1300 to 10 torr. (a) Measured time-resolved ΔIFL(td) (offset for clarity); (b) expanded scale of the measured time-resolved ΔIFL(td) on the rising edge; (c) calculated time-resolved ΔIFL(td) on the rising edge
Fig.13  Vector potential A(td) of THz pulse measured by THz REEF and the dA(td)/dtd compared with the THz waveform measured by EO detection
Fig.14  Experimental setup of THz-REEF in gases. BS, beam splitter; PM, parabolic mirror; PMT, photo multiplier tube
Fig.15  (a) Ne fluorescence spectra between 580 and 760 nm at different laser pulse energies (without THz field). The Ne fluorescence spectra at the laser pulse energies of (b) 100, and (c) 120 μJ in the THz field
Fig.16  Laser pulse energy dependence of (a) absolute emission intensity and (b) enhancement ratio of Ne 702 nm line in the THz field
Fig.17  (a) Ar fluorescence spectra between 680 and 780 nm at different laser pulse energies (without THz field). The Ar fluorescence spectra at laser pulse energies of (b) 80, (c) 100, and (d) 140 μJ in the THz field
Fig.18  Pulse energy dependence of (a) absolute emission intensity and (b) relative enhancement of Ar 763 nm line in the THz field
Fig.19  (a) Kr fluorescence spectra between 820 and 900 nm at different laser pulse energies (without THz field). The Kr fluorescence spectra at laser pulse energies of (b) 60, (c) 70 and (d) 90 μJ in the THz field
Fig.20  Pulse energy dependence of the (a) 759 nm line and (b) continuum emission in Kr plasma in the THz field; (c) pulse energy dependence of the enhancement ratio in the THz field. The shadow area is the enhancement saturation region
Fig.21  (a) Xe fluorescence spectra between 810 and 850 nm at different laser pulse energies (without THz field). The fluorescence spectra at laser pulse energies of (b) 40, (c) 50, and (d) 80 μJ in the THz field
Fig.22  Pulse energy dependence of the (a) 823 nm line and (b) continuum emission in Xe plasma in the THz field; (c) laser pulse energy dependence of the enhancement ratio in the THz field. The shadow area is enhancement saturation region
Fig.23  Time-dependent enhancement of the fluorescence emission in Ar, Kr, and Xe gases when the excitation pulse energy is 70 μJ and pressure is 30 torr
Fig.24  Fluorescence spectra of alkane gases in the THz field
Fig.25  Schematics of the THz wave remote sensing. The 2ω pulse is generated by passing the fundamental beam through a type I β-BBO crystal. Both of the fundamental and second harmonic optical pulses are linearly polarized along a vertical direction. The relative phase change between the ω and 2ω pulses is tuned by the lateral translation of fused silica wedges in the optical beam path after the α-BBO. The two optical pulses are focused by a parabolic mirror with effective focal length of 150 mm into air to generate plasma. The time delay td is defined as the delay between optical pulse peak and THz pulse peak. The distance of the remote sensing is varied by moving the fluorescence detection system
Fig.26  Photo image of the in-line phase compensator consisting of a β-BBO crystal, a few α-BBO crystals, a pair of the fused silica wedges, and a dual wave plate.
Fig.27  (a) High-lying states can be ionized by a series of collisions with energetic electrons; (b) interaction between the THz pulse and the asymmetric photoelectron velocity distributions generated by two-color fields ionization; (c) measured phase dependence of fluorescence emission IFL and plasma-photocurrent-induced THz emission ITHzpla are compared with the calculated phase dependence of ion yield N2+ and ITHzpla; (d) zoom-in of c (shifted and normalized for clarity). Electron velocity direction is reversed as Δ?ω,2ω is changed by π
Fig.28  (a) 3D plot of THz-REEF at different relative optical phase between ω and 2ω pulses when ω, 2ω and THz beams are all vertically polarized; (b) 3D plot REEF at different relative optical phase when ω, 2ω beams are horizontally polarized and THz beam is vertically polarized; (c) 3D plot of differential REEF between ΔIFL(td,Δ?ω,2ω) with any velocity distribution and ΔIFL(td,0) with symmetric velocity distribution, under the same polarization condition as that in (a)
Fig.29  Measured time-resolved REEF at relative optical phase change Δ?ω,2ω=±lπ/2
Fig.30  (a) Measured time-resolved THz-REEF at phase Δ?ω,2ω=0,±π/2 respectively; (b) comparison between the THz waveform measured by electro-optic (EO) sampling and THz waveform obtained from the difference of the two REEF curves with opposite velocity distribution; (c) simulated THz-REEF derived from Eq. (12) at Δ?ω,2ω=0,±π/2, respectively
Fig.31  (a) Measured THz waveforms using REEF in dry nitrogen and ambient air environment, respectively; (b) corresponding THz spectra in logarithmic scale. The spectral resolution is 0.02 THz. Inset: Zoom-in on water vapor absorption features in shadow area
Fig.32  THz absorption spectrum of 4A-DNT measured by REEF compared with that measured by electric-optic sampling
Fig.33  Broadband THz wave remote sensing. The measured THz waveforms by EO sampling and REEF at different distances from plasma were shown respectively. Waveforms are normalized and shifted for clarity. Inset: THz spectrum measured at a distance of 10 m
Fig.34  Measured field dependence of the REEF signal (solid dots) and quadratic fit (dashed line) (a) in linear scale and (b) in log scale
Fig.35  Schematics of plasma characterization using THz-wave-enhanced fluorescence. IF, interference filter; PMT, photo-multiplier tube; Enh. Fl., enhanced fluorescence
Fig.36  Pressure dependences of the enhanced fluorescence (Enh. Fl.) in (a) pure nitrogen gas and (b) mixture of nitrogen and helium gas. The laser pulse energy is 80 μJ. (c) Comparison between measured (solid squares) and calculated (dash line) relaxation time. The error bar is due to the uncertainty from the fitting for 5 individual scans measured at the same pressure
Fig.37  (a) Measured (symbol) and fitted (line) ΔIFL(td) at 100, 300 and 500 torr, respectively. All the curves are normalized for clarity; (b) plasma densities extracted from ΔIFL(td) curves are compared with normalized background fluorescence signal (without THz field) at different pressures. Norm. Enh. Fl., normalized enhanced fluorescence
Fig.38  (a) Measured nitrogen fluorescence (Fl.) with different excitation laser pulse energies at 65 torr. The shade area is enlarged for clarity; (b) measured electron relaxation time. Inset, the measured background fluorescence signal (sold red circle) and calculated ion density being normalized to fluorescence signal (blue dash line)
Fig.39  (a) Schematic of the THz-wave-induced photoluminescence quenching experiment; (b) measured photoluminescence emission spectra of CdTe and GaAs at the peak THz intensity of 0 (solid lines) and 13 MW/cm2 (dashed lines)
Fig.40  Measured time-resolved photoluminescence (PL) quenching in CdTe at 837 nm (top) and in GaAs at 850 nm (middle) in comparison with the time-domain waveform of a THz pulse (bottom)
Fig.41  Solid black squares and red dots show the measured THz intensity dependence of photoluminescence in CdTe and GaAs, respectively. Solid lines are the linear fit. The error bars were obtained from the multiple measurements at the same point. Norm. PL, normalized photoluminescence
Fig.42  Measured photoluminescence signal (normalized) as a function of time delay between THz pulse and optical excitation pulse, and fitting results in (a) CdTe and (b) GaAs, respectively. PL Quen., photoluminescence quenching
1 Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
doi: 10.1038/nmat708 pmid: 12618844
2 Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M. Recent advances in terahertz imaging. Applied Physics B, Lasers and Optics, 1999, 68(6): 1085–1094
doi: 10.1007/s003400050750
3 Nahata A, Weling A S, Heinz T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters, 1996, 69(16): 2321–2323
doi: 10.1063/1.117511
4 Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Applied Physics Letters, 2005, 86(24): 241116-1–241116-3
doi: 10.1063/1.1946192
5 Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
doi: 10.1038/nphoton.2007.3
6 Karpowicz N, Zhong H, Zhang C L, Lin K I, Hwang J S, Xu J Z, Zhang X C. Compact continuous-wave subterahertz system for inspection applications. Applied Physics Letters, 2005, 86(5): 054105-1–054105-3
doi: 10.1063/1.1856701
7 Exter M, Fattinger C, Grischkowsky D. High-brightness terahertz beams characterized with an ultrafast detector. Applied Physics Letters, 1989, 55(4): 337–339
doi: 10.1063/1.101901
8 Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
doi: 10.1063/1.114909
9 Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
doi: 10.1364/OL.25.001210 pmid: 18066171
10 Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005-1–075005-4
doi: 10.1103/PhysRevLett.96.075005 pmid: 16606102
11 Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
doi: 10.1038/nphoton.2008.153
12 Karpowicz N, Dai J M, Lu X F, Chen Y Q, Yamaguchi M, Zhao H W, Zhang X C, Zhang L L, Zhang C L, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131–011133
doi: 10.1063/1.2828709
13 Woo W, DeGroot J S. Microwave absorption and plasma heating due to microwave breakdown in the atmosphere. Physics of Fluids, 1984, 27(2): 475–487
doi: 10.1063/1.864645
14 Gibbon P, F?rster E. Short-pulse laser-plasma interactions. Plasma Physics and Controlled Fusion, 1996, 38(6): 769–793
doi: 10.1088/0741-3335/38/6/001
15 Kruer W L, Dawson J M. The physics of laser plasma interactions. Physics Today, 1989, 42(8): 69–70
doi: 10.1063/1.2811121
16 Filevich J, Rocca J J, Marconi M C, Smith R F, Dunn J, Keenan R, Hunter J R, Moon S J, Nilsen J, Ng A, Shlyaptsev V N. Picosecond-resolution soft-X-ray laser plasma interferometry. Applied Optics, 2004, 43(19): 3938–3946
doi: 10.1364/AO.43.003938 pmid: 15250561
17 Seely J F, Harris E G. Heating of a plasma by multiphoton inverse bremsstrahlung. Physical Review A, 1973, 7(3): 1064–1067
doi: 10.1103/PhysRevA.7.1064
18 Schlessinger L, Wright J. Inverse-bremsstrahlung absorption rate in an intense laser field. Physical Review A, 1979, 20(5): 1934–1945
doi: 10.1103/PhysRevA.20.1934
19 Phelps A V. Rotational and vibrational excitation of molecules by low-energy electrons. Reviews of Modern Physics, 1968, 40(2): 399–410
doi: 10.1103/RevModPhys.40.399
20 Shakhatov V, Lebedev Y. Kinetics of excitation of N2(AΣu+3, vA), N2(C3Πu, vc), and N2(B3Πg, vB) in nitrogen discharge plasmas as studied by means of emission spectroscopy and computer simulation. High Energy Chemistry, 2008, 42(3): 170–204
doi: 10.1134/S0018143908030028
21 Sugiyama K, Fujii T, Miki M, Yamaguchi M, Zhidkov A, Hotta E, Nemoto K. Laser-filament-induced corona discharges and remote measurements of electric fields. Optics Letters, 2009, 34(19): 2964–2966
doi: 10.1364/OL.34.002964 pmid: 19794783
22 Czarnetzki U, Luggenh?lscher D, D?bele H F. Sensitive electric field measurement by fluorescence-dip spectroscopy of Rydberg states of atomic hydrogen. Physical Review Letters, 1998, 81(21): 4592–4595
doi: 10.1103/PhysRevLett.81.4592
23 Zhou B, Akturk S, Prade B, André Y B, Houard A, Liu Y, Franco M, D’Amico C, Salmon E, Hao Z Q, Lascoux N, Mysyrowicz A. Revival of femtosecond laser plasma filaments in air by a nanosecond laser. Optics Express, 2009, 17(14): 11450–11456
doi: 10.1364/OE.17.011450 pmid: 19582060
24 Oks E A. Plasma Spectroscopy: The Influence of Microwave and Laser Fields. Berlin: Springer-Verlag, 1995
25 Dai J M, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal on Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
doi: 10.1109/JSTQE.2010.2047007
26 Dai J M, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903-1–103903-4
doi: 10.1103/PhysRevLett.97.103903 pmid: 17025819
27 Moore C A, Davis G P, Gottscho R A. Sensitive, nonintrusive, in-situ measurement of temporally and spatially resolved plasma electric fields. Physical Review Letters, 1984, 52(7): 538–541
doi: 10.1103/PhysRevLett.52.538
28 Wagenaars E, Bowden M D, Kroesen G M W. Measurements of electric-field strengths in ionization fronts during breakdown. Physical Review Letters, 2007, 98(7): 075002-1–075002-4
doi: 10.1103/PhysRevLett.98.075002 pmid: 17359030
29 Kolner B H, Buckles R A, Conklin P M, Scott R P. Plasma characterization with terahertz pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 505–512
doi: 10.1109/JSTQE.2007.913395
30 Jamison S P, Shen J, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A. Plasma characterization with terahertz time-domain measurements. Journal of Applied Physics, 2003, 93(7): 4334–4336
doi: 10.1063/1.1560564
31 Mics Z, Kadlec F, Kuzel P, Jungwirth P, Bradforth S E, Apkarian V A. Nonresonant ionization of oxygen molecules by femtosecond pulses: plasma dynamics studied by time-resolved terahertz spectroscopy. Journal of Chemical Physics, 2005, 123(10): 104310-1–104310-10
doi: 10.1063/1.2032987 pmid: 16178600
32 Kampfrath T, Perfetti L, Gericke D O, Frischkorn C, Tegeder P, Wolf M. Ultrafast capture of free electrons in optically ionized gases by the electron scavenger SF6. Chemical Physics Letters, 2006, 429(4–6): 350–354
doi: 10.1016/j.cplett.2006.08.038
33 K?hler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C, Rossi F. Terahertz semiconductor-heterostructure laser. Nature, 2002, 417(6885): 156–159
doi: 10.1038/417156a pmid: 12000955
34 Yeh K L, Hoffmann M C, Hebling J, Nelson K A. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121-1–171121-3
doi: 10.1063/1.2734374
35 Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T. Generation of single-cycle THz transients with high electric-field amplitudes. Optics Letters, 2005, 30(20): 2805–2807
doi: 10.1364/OL.30.002805 pmid: 16252781
36 Wu Q, Litz M, Zhang X C. Broadband detection capability of ZnTe electro-optic field detectors. Applied Physics Letters, 1996, 68(21): 2924–2926
doi: 10.1063/1.116356
37 Grischkowsky D, Keiding S, Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006–2015
doi: 10.1364/JOSAB.7.002006
38 Talebpour A, Liang Y, Chin S L. Population trapping in the CO molecule. Journal of Physics B, Atomic, Molecular, and Optical Physics, 1996, 29(15): 3435–3442
doi: 10.1088/0953-4075/29/15/016
39 Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chemical Physics, 2009, 360(1–3): 171–175
doi: 10.1016/j.chemphys.2009.05.001
40 Iwasaki A, Ak?zbek N, Ferland B, Luo Q, Roy G, Bowden C M, Chin S L. A LIDAR technique to measure the filament length generated by a high-peak power femtosecond laser pulse in air. Applied Physics B, Lasers and Optics, 2003, 76(3): 231–236
doi: 10.1007/s00340-002-1077-3
41 Martirosyan A E, Altucci C, Bruno A, de Lisio C, Porzio A, Solimeno S. Time evolution of plasma afterglow produced by femtosecond laser pulses. Journal of Applied Physics, 2004, 96(10): 5450–5455
doi: 10.1063/1.1803920
42 Fukuchi T, Wuerker R F, Wong A Y. Observation of small electron temperature variations in a nitrogen plasma by laser-induced fluorescence. Journal of Applied Physics, 1994, 75(11): 7237–7239
doi: 10.1063/1.356681
43 McDaniel E W. Collision Phenomena in Ionized Gases. New York: Wiley, 1964
44 Mlejnek M, Wright E M, Moloney J V. Femtosecond pulse propagation in argon: a pressure dependence study. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58(4): 4903–4910
doi: 10.1103/PhysRevE.58.4903
45 Talebpour A, Petit S, Chin S L. Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air. Optics Communications, 1999, 171(4–6): 285–290
doi: 10.1016/S0030-4018(99)00498-8
46 Tzortzakis S, Prade B, Franco M, Mysyrowicz A. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Optics Communications, 2000, 181(1–3): 123–127
doi: 10.1016/S0030-4018(00)00734-3
47 Bryan R B, Holt R B, Oldenberg O. Recombination and afterglow in nitrogen and oxygen. Physical Review, 1957, 106(1): 83–86
doi: 10.1103/PhysRev.106.83
48 Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses. Applied Physics B, Lasers and Optics, 1999, 68(4): 753–756
doi: 10.1007/s003400050699
49 Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air. Applied Physics B, Lasers and Optics, 2000, 71(6): 877–879
doi: 10.1007/s003400000463
50 Augst S, Strickland D, Meyerhofer D D, Chin S L, Eberly J H. Tunneling ionization of noble gases in a high-intensity laser field. Physical Review Letters, 1989, 63(20): 2212–2215
doi: 10.1103/PhysRevLett.63.2212 pmid: 10040829
51 Corkum P B. Plasma perspective on strong field multiphoton ionization. Physical Review Letters, 1993, 71(13): 1994–1997
doi: 10.1103/PhysRevLett.71.1994 pmid: 10054556
52 Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports, 2007, 441(2–4): 47–189
doi: 10.1016/j.physrep.2006.12.005
53 Trushin S A, Kosma K, Fu? W, Schmid W E. Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon. Optics Letters, 2007, 32(16): 2432–2434
doi: 10.1364/OL.32.002432 pmid: 17700809
54 L’Huillier A, Balcou P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Physical Review Letters, 1993, 70(6): 774–777
doi: 10.1103/PhysRevLett.70.774 pmid: 10054200
55 Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G, Agostini P. Observation of a train of attosecond pulses from high harmonic generation. Science, 2001, 292(5522): 1689–1692
doi: 10.1126/science.1059413 pmid: 11387467
56 Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001-1–093001-4
doi: 10.1103/PhysRevLett.102.093001 pmid: 19392516
57 Bernhardt J, Liu W, Théberge F, Xu H L, Daigle J F, Chateauneuf M, Dubois J, Chin S L. Spectroscopic analysis of femtosecond laser plasma filament in air. Optics Communications, 2008, 281(5): 1268–1274
doi: 10.1016/j.optcom.2007.10.100
58 Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002-1–235002-4
doi: 10.1103/PhysRevLett.103.235002 pmid: 20366153
59 de Boer M P, Hoogenraad J H, Vrijen R B, Constantinescu R C, Noordam L D, Muller H G. Adiabatic stabilization against photoionization: an experimental study. Physical Review A, 1994, 50(5): 4085–4098
doi: 10.1103/PhysRevA.50.4085 pmid: 9911383
60 Talebpour A, Chien C Y, Chin S L. Population trapping in rare gases. Journal of Physics B, Atomic, Molecular, and Optical Physics, 1996, 29(23): 5725–5733
doi: 10.1088/0953-4075/29/23/015
61 Liu J L, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505-1–041505-3
doi: 10.1063/1.3291676
62 Tzortzakis S, Méchain G, Patalano G, André Y B, Prade B, Franco M, Mysyrowicz A, Munier J M, Gheudin M, Beaudin G, Encrenaz P. Coherent subterahertz radiation from femtosecond infrared filaments in air. Optics Letters, 2002, 27(21): 1944–1946
doi: 10.1364/OL.27.001944 pmid: 18033410
63 Kress M, L?ffler T, Eden S, Thomson M, Roskos H G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122
doi: 10.1364/OL.29.001120 pmid: 15182005
64 Chen Y Q, Yamaguchi M, Wang M, Zhang X C. Terahertz pulse generation from noble gases. Applied Physics Letters, 2007, 91(25): 251116-1–251116-3
doi: 10.1063/1.2826544
65 Lu X F, Karpowicz N, Chen Y Q, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93(26): 261106-1–261106-3
doi: 10.1063/1.3056119
66 Hebling J, Ka-Lo Y, Nelson K A, Hoffmann M C. High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 345–353
doi: 10.1109/JSTQE.2007.914602
67 Ralchenko Y, Kramida A E, Reader J. NIST Atomic Spectra Database. version 3.1. 5, 2008
68 Rolin M N, Shabunya S I, Rostaing J C, Perrin J M. Self-consistent modelling of a microwave discharge in neon and argon at atmospheric pressure. Plasma Sources Science & Technology, 2007, 16(3): 480–491
doi: 10.1088/0963-0252/16/3/007
69 Zhu X M, Pu Y K. A simple collisional-radiative model for low-pressure argon discharges. Journal of Physics D, Applied Physics, 2007, 40(8): 2533–2538
doi: 10.1088/0022-3727/40/8/018
70 Pine A, Glassbrenner C, Kafalas J. Pressure-tuned GaAs diode-laser absorption spectrocopy of xenon hyperfine structure. IEEE Journal of Quantum Electronics, 1973, 9(8): 800–807
doi: 10.1109/JQE.1973.1077753
71 Latimer C J, Mackie R A, Sands A M, Kouchi N, Dunn K F. The dissociative photoionization of methane in the VUV. Journal of Physics B, Atomic, Molecular, and Optical Physics, 1999, 32(11): 2667–2676
doi: 10.1088/0953-4075/32/11/314
72 Au J W, Cooper G, Brion C E. The molecular and dissociative photoionization of ethane, propane, and n-butane: absolute oscillator strengths (10–80 eV) and breakdown pathways. Chemical Physics, 1993, 173(2): 241–265
doi: 10.1016/0301-0104(93)80143-W
73 Kong F A, Luo Q, Xu H L, Sharifi M, Song D, Chin S L. Explosive photodissociation of methane induced by ultrafast intense laser. Journal of Chemical Physics, 2006, 125(13): 133320-1–133320-5
doi: 10.1063/1.2204919 pmid: 17029473
74 Mittleman D. Sensing with Terahertz Radiation. Berlin: Springer, 2003
75 Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D. THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280
doi: 10.1088/0268-1242/20/7/018
76 Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001-1–023001-4
doi: 10.1103/PhysRevLett.103.023001 pmid: 19659200
77 Liu J L, Dai J M, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631
doi: 10.1038/nphoton.2010.165
78 Corkum P B, Burnett N H, Brunel F. Above-threshold ionization in the long-wavelength limit. Physical Review Letters, 1989, 62(11): 1259–1262
doi: 10.1103/PhysRevLett.62.1259 pmid: 10039624
79 Kre? M, Loffler T, Thomson M D, Dorner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331
doi: 10.1038/nphys286
80 Schumacher D W, Weihe F, Muller H G, Bucksbaum P H. Phase dependence of intense field ionization: a study using two colors. Physical Review Letters, 1994, 73(10): 1344–1347
doi: 10.1103/PhysRevLett.73.1344 pmid: 10056769
81 Kulander K C, Schafer K J, Krause J L. Dynamic stabilization of hydrogen in an intense, high-frequency, pulsed laser field. Physical Review Letters, 1991, 66(20): 2601–2604
doi: 10.1103/PhysRevLett.66.2601 pmid: 10043564
82 Fedorov M V. Progress in Ultrafast Intense Laser Science. Berlin: Springer, 2006
83 Hatano Y. Interaction of VUV photons with molecules: spectroscopy and dynamics of molecular superexcited states. Journal of Electron Spectroscopy and Related Phenomena, 2001, 119(2–3): 107–125
doi: 10.1016/S0368-2048(01)00285-7
84 Azarm A, Xu H L, Kamali Y, Bernhardt J, Song D, Xia A, Teranishi Y, Lin S H, Kong F, Chin S L. Direct observation of super-excited states in methane created by a femtosecond intense laser field. Journal of Physics B, Atomic, Molecular, and Optical Physics, 2008, 41(22): 225601-1–225601-4
doi: 10.1088/0953-4075/41/22/225601
85 Christophorou L G, Olthoff J K. Electron interactions with excited atoms and molecules. Advances in Atomic, Molecular, and Optical Physics, 2001, 44: 155–293
doi: 10.1016/S1049-250X(01)80032-X
86 Lao C, Gamero A, Sola A, Petrova T, Benova E, Petrov G M, Zhelyazkov I. Populations of excited atomic states along argon surface-wave plasma columns at low and intermediate pressures. Journal of Applied Physics, 2000, 87(11): 7652
doi: 10.1063/1.373436
87 Filin A, Compton R, Romanov D A, Levis R J. Impact-ionization cooling in laser-induced plasma filaments. Physical Review Letters, 2009, 102(15): 155004-1–155004-4
doi: 10.1103/PhysRevLett.102.155004 pmid: 19518642
88 Wen H, Lindenberg A M. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902-1–023902-4
doi: 10.1103/PhysRevLett.103.023902 pmid: 19659205
89 Ammosov M V, Delone N B, Krainov V P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. High Intensity Laser Processes, 1986, 664: 138–141
doi: 10.1117/12.938695
90 Mlejnek M, Wright E M, Moloney J V. Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air. IEEE Journal of Quantum Electronics, 1999, 35(12): 1771–1776
doi: 10.1109/3.806580
91 Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–113019753077
doi: 10.1364/OL.14.001128
92 Dai J M, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117-1-021117-3
doi: 10.1063/1.3068501
93 Huddletsone R H, Leonard S L. Plasma diagnostic techniques. In: Plasma Diagnostic Techniques. New York: Academic, 1965
94 Hopwood J, Guarnieri C R, Whitehair S J, Cuomo J J. Langmuir probe measurements of a radio frequency induction plasma. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1993, 11(1): 152–156
doi: 10.1116/1.578282
95 Griem H R. Plasma Spectroscopy. New York: McGraw-Hill, 1964
96 Heald M A, Wharton C B. Plasma Diagnostics with Microwaves. New York: McGraw-Hill, 1965
97 Ashby D E T F, Jephcott D F. Measurement of plasma density using a gas laser as an infrared interferometer. Applied Physics Letters, 1963, 3(1): 13–16
doi: 10.1063/1.1723556
98 Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime. Physical Review Letters, 1992, 68(24): 3535–3538
doi: 10.1103/PhysRevLett.68.3535 pmid: 10045729
99 Kasparian J, Rodriguez M, Méjean G, Yu J, Salmon E, Wille H, Bourayou R, Frey S, Andre Y B, Mysyrowicz A, Sauerbrey R, Wolf J P, W?ste L. White-light filaments for atmospheric analysis. Science, 2003, 301(5629): 61–64
doi: 10.1126/science.1085020 pmid: 12843384
100 Théberge F, Liu W W, Simard P T, Becker A, Chin S L. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3 Pt 2): 036406-1–036406-7
doi: 10.1103/PhysRevE.74.036406 pmid: 17025753
101 Park H K, Mansfield D K, Johnson L C. Parametric study of electron density profile evolution following injection in TFTR. Review of Scientific Instruments, 1986, 57(8): 1999
doi: 10.1063/1.1138769
102 Jamison S P, Shen J, Jones D R, Issac R C, Ersfeld B, Clark D, Jaroszynski D A. Plasma characterization with terahertz time-domain measurements. Journal of Applied Physics, 2003, 93(7): 4334–4336
doi: 10.1063/1.1560564
103 Kolner B H, Conklin P M, Buckles R A, Fontaine N K, Scott R P. Time-resolved pulsed-plasma characterization using broadband terahertz pulses correlated with fluorescence imaging. Applied Physics Letters, 2005, 87(15): 151501-1–151501-3
doi: 10.1063/1.2103421
104 Crompton R W, Elford M T, Robertson A G. The momentum transfer cross section for electrons in helium derived from drift velocities at 77°K. Australian Journal of Physics, 1970, 23(5): 667–682
doi: 10.1071/PH700667
105 Itikawa Y. Cross sections for electron collisions with nitrogen molecules. Journal of Physical and Chemical Reference Data, 2006, 35(1): 31–53
doi: 10.1063/1.1937426
106 Othonos A. Probing ultrafast carrier and phonon dynamics in semiconductors. Journal of Applied Physics, 1998, 83(4): 1789–1830
doi: 10.1063/1.367411
107 Taylor A J, Erskine D J, Tang C L. Ultrafast relaxation dynamics of photoexcited carriers in GaAs and related compounds. Journal of the Optical Society of America B, Optical Physics, 1985, 2(4): 663–673
doi: 10.1364/JOSAB.2.000663
108 Prabhu S S, Ralph S E, Melloch M R, Harmon E S. Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy. Applied Physics Letters, 1997, 70(18): 2419–2421
doi: 10.1063/1.118890
109 Averitt R D, Taylor A J. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. Journal of Physics Condensed Matter, 2002, 14(50): R1357–R1390
doi: 10.1088/0953-8984/14/50/203
110 Mittleman D M, Cunningham J, Nuss M C, Geva M. Noncontact semiconductor wafer characterization with the terahertz Hall effect. Applied Physics Letters, 1997, 71(1): 16–18
doi: 10.1063/1.119456
111 Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H. Femtosecond charge transport in polar semiconductors. Physical Review Letters, 1999, 82(25): 5140–5143
doi: 10.1103/PhysRevLett.82.5140
112 Beard M C, Turner G M, Schmuttenmaer C A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(23): 15764–15777
doi: 10.1103/PhysRevB.62.15764
113 Lui K P H, Hegmann F A. Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments. Applied Physics Letters, 2001, 78(22): 3478–3480
doi: 10.1063/1.1375841
114 Zhou Q L, Shi Y L, Jin B, Zhang C L.Ultrafast carrier dynamics and terahertz conductivity of photoexcited GaAs under electric field. Applied Physics Letters, 2008, 93(10): 102103-1–102103-3
doi: 10.1063/1.2980026
115 Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769
doi: 10.1364/OL.33.002767 pmid: 19037420
116 Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature, 2007, 450(7173): 1210–1213
doi: 10.1038/nature06399 pmid: 18097404
117 Danielson J R, Lee Y S, Prineas J P, Steiner J T, Kira M, Koch S W. Interaction of strong single-cycle terahertz pulses with semiconductor quantum wells. Physical Review Letters, 2007, 99(23): 237401-1–237401-4
doi: 10.1103/PhysRevLett.99.237401 pmid: 18233409
118 Wen H, Wiczer M, Lindenberg A M. Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(12): 125203-1–125203-6
doi: 10.1103/PhysRevB.78.125203
119 Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629
doi: 10.1364/OE.17.009620 pmid: 19506611
120 Lakowicz J R, Masters B R. Principles of Fluorescence Spectroscopy. 3rd ed. New York: Springer, 2006
121 Nordstrom K B, Johnsen K, Allen S J, Jauho A P, Birnir B, Kono J, Noda T, Akiyama H, Sakaki H. Excitonic dynamical franz-keldysh effect. Physical Review Letters, 1998, 81(2): 457–460
doi: 10.1103/PhysRevLett.81.457
122 Brinkman W F, Rice T M. Electron-hole liquids in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1973, 7(4): 1508–1523
doi: 10.1103/PhysRevB.7.1508
[1] Tatiana A. SAVELIEVA, Marina N. KURYANOVA, Ekaterina V. AKHLYUSTINA, Kirill G. LINKOV, Gennady A. MEEROVICH, Victor B. LOSCHENOV. Attenuation correction technique for fluorescence analysis of biological tissues with significantly different optical properties[J]. Front. Optoelectron., 2020, 13(4): 360-370.
[2] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[3] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
[4] Ronald SROKA, Nikolas DOMINIK, Max EISEL, Anna ESIPOVA, Christian FREYMÜLLER, Christian HECKL, Georg HENNIG, Christian HOMANN, Nicolas HOEHNE, Robert KAMMERER, Thomas KELLERER, Alexander LANG, Niklas MARKWARDT, Heike POHLA, Thomas PONGRATZ, Claus-Georg SCHMEDT, Herbert STEPP, Stephan STRÖBL, Keerthanan ULAGANATHAN, Wolfgang ZIMMERMANN, Adrian RUEHM. Research and developments of laser assisted methods for translation into clinical application[J]. Front. Optoelectron., 2017, 10(3): 239-254.
[5] Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Front. Optoelectron., 2017, 10(3): 255-266.
[6] E. BORISOVA, Ts. GENOVA, O. SEMYACHKINA-GLUSHKOVSKAYA, N. PENKOV, I. TERZIEV, B. VLADIMIROV. Excitation-emission matrices (EEMs) of colorectal tumors – tool for spectroscopic diagnostics of gastrointestinal neoplasia[J]. Front. Optoelectron., 2017, 10(3): 292-298.
[7] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[8] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[9] Kun LI,Weiwei QIN,Yan XU,Tianhuan PENG,Di LI. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution[J]. Front. Optoelectron., 2015, 8(4): 379-393.
[10] Jiayun XIANG,Han NIE,Yibin JIANG,Jian ZHOU,Hoi Sing KWOK,Zujin ZHAO,Ben Zhong TANG. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
[11] Wei YAN,Xiao PENG,Danying LIN,Qi WANG,Jian GAO,Teng LUO,Jie ZHOU,Tong YE,Junle QU,Hanben NIU. Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes[J]. Front. Optoelectron., 2015, 8(2): 177-182.
[12] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[13] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
[14] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[15] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed