Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 317-332    https://doi.org/10.1007/s12200-018-0839-4
REVIEW ARTICLE
Progress on photochromic diarylethenes with aggregation induced emission
Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI(), Ming-Qiang ZHU
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(919 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Among various photochromic compounds, diarylethenes (DAEs) have been widely studied and applied due to their excellent thermal bistability and fatigue resistance. Most researches are focused on the properties and applications of DAEs in solution. However, they meet the problem of fluorescence quenching at high concentration or at solid state which limits their performance in the practical applications. Fortunately, the DAE based photochromic aggregation-induced emission (AIE) materials do well in addressing this problem. This work here reviews the current research progress on the structures, properties and applications of the DAE based photochromic AIE materials and points out some existing problems so as to promote subsequent development of this field in the future.

Keywords aggregation-induced emission (AIE)      photochromism      diarylethene (DAE)      fluorescence photoswitching      optical memory      super-resolution imaging     
Corresponding Author(s): Chong LI   
Just Accepted Date: 08 August 2018   Online First Date: 13 September 2018    Issue Date: 21 December 2018
 Cite this article:   
Nuo-Hua XIE,Ying CHEN,Huan YE, et al. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0839-4
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/317
Fig.1  Chemical structure of CN-MBE based diarylethene (DAE) and fluorescence photos of its THF solution (soln) and the colloidal suspension (II, IV) of fluorescent photochromic organic nanoparticles (FPONs). The concentration is 2´10-4 mol/L) [35]
Fig.2  Photochromism and fluorescence on/off in solution and the “aggregate” state of dithienylethene-tetraphenylethene (DTE-TPE) [36]
Fig.3  Structures of tetraphenylethene and triphenylethene-based bisthienylethene (BTE) [38]
Fig.4  Typical photo-cyclization process of tetraphenylethylene
Fig.5  Proposed mechanism of the photochromism of TrPECl2 [43]
Fig.6  Hybrid tetraarylethenes with photoswitchable aggregation-induced emission (AIE) and reversible photochromism [46]
Fig.7  Chemical structures of H and G and the photoresponsive fluorescence switching process of the complex [47]
Fig.8  Photochemical and reversible conversions between ring-opened BTE-EQ and ring-closure c-BTE-EQ by alternating ultraviolet and visible light irradiations. Specially, the aggregation at AIE state prevents BTE-EQ taking place the photocyclization reaction [48]
Fig.9  Morphology and fluorescence change of B2C during H2O addition and ultraviolet exposure [49]
Fig.10  Diagram of “giant amplification of fluorescence photoswitching” in nanoparticles induced by intermolecular Förster resonance energy transfer (FRET) [50]
Fig.11  Construction of DTE-BP/Laponite hybrid hydrogel and its fluorescence photoswitching process [52]
Fig.12  Photochromic reaction of poly(DCS-BTE) and its absorption and fluorescence spectra at the open form and photostationary state (irradiated at 290 nm) [55]
Fig.13  Structures and PL spectra changes of (a, c) poly(DTE-TPE) and (b, d) P-PHT [54,56]
Fig.14  Fluorescent photographs of DTE-BP embedded PVDF film upon alternating 254 nm UV and visible light irradiations [51]
Fig.15  Rewritable and nondestructive readout of fluorescent patterns recorded on poly(DCS-BTE) film prepared by spin-coating [55]
Fig.16  Illustration of a binary logical gate based on the SS-TFMBE/TFM-BTE organogel systerm. It uses fluorescence quenching as output signal in response to two inputs signal of “UV light” and “heat,” giving a The resulted truth table: a) gel/visible light (0, 0), b) gel/UV light (1, 0), c) sol/visible light (0, 1), d) sol/UV light (1, 1) [53]
Fig.17  (a) Conventional fluorescence imaging of DTE-TPE probes in PMMA matrix. (b) Super-resolution fluorescence imaging of the same area with (a). (c) Enlarged view and (d) super-resolution fluorescence images of the selected regions in (a) and (b), respectively. (e) Cross-sectional profiles along the dashed line across a couple of adjacent DTE-TPE emitting spots in (d), suggesting a spatial resolution of sub-81 nm [36]
1 MIrie, M Mohri. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. Journal of Organic Chemistry, 1988, 53(4): 803–808
https://doi.org/10.1021/jo00239a022
2 MIrie. Diarylethenes for memories and switches. Chemical Reviews, 2000, 100(5): 1685–1716
https://doi.org/10.1021/cr980069d pmid: 11777416
3 MIrie, T Fukaminato, KMatsuda, SKobatake. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews, 2014, 114(24): 12174–12277
https://doi.org/10.1021/cr500249p pmid: 25514509
4 HTian, B Chen, H YTu, KMüllen. Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence. Advanced Materials, 2002, 14(12): 918–923
https://doi.org/10.1002/1521-4095(20020618)14:12<918::AID-ADMA918>3.0.CO;2-Y
5 CLi, J Liu, NXie, HYan, M Zhu. Research progress on photoswitchable fluorescent dithienylethenes. Polymer Bulletin, 2015, (9): 142–162
6 CLi, Y Chen, NXie, JLiu, C Fan, QZhou, MZhu. Research progress on hydrophilic photoswitchable fluorescent diarylethenes. Chinese Journal of Applied Chemistry, 2017, 34(12): 1379–1402
7 YZou, T Yi, SXiao, FLi, C Li, XGao, JWu, M Yu, CHuang. Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. Journal of the American Chemical Society, 2008, 130(47): 15750–15751
https://doi.org/10.1021/ja8043163 pmid: 18973291
8 CLi, Z Hu, M PAldred, L XZhao, HYan, G F Zhang, Z L Huang, A D Q Li, M Q Zhu. Water-soluble polymeric photoswitching dyads impart super-resolution lysosome highlighters. Macromolecules, 2014, 47(24): 8594–8601
https://doi.org/10.1021/ma501505w
9 MPärs, C C Hofmann, K Willinger, PBauer, MThelakkat, JKöhler. An organic optical transistor operated under ambient conditions. Angewandte Chemie, 2011, 50(48): 11405–11408
https://doi.org/10.1002/anie.201104193 pmid: 22113798
10 MBerberich, A M Krause, M Orlandi, FScandola, FWürthner. Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angewandte Chemie, 2008, 47(35): 6616–6619
https://doi.org/10.1002/anie.200802007 pmid: 18683179
11 MBerberich, M Natali, PSpenst, CChiorboli, FScandola, FWürthner. Nondestructive photoluminescence read-out by intramolecular electron transfer in a perylene bisimide-diarylethene dyad. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(43): 13651–13664
https://doi.org/10.1002/chem.201201484 pmid: 22969018
12 JMoreno, F Schweighöfer, JWachtveitl, SHecht. Reversible photomodulation of electronic communication in a p-conjugated photoswitch-fluorophore molecular dyad. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(3): 1070–1075
https://doi.org/10.1002/chem.201503419 pmid: 26667670
13 WSzymański, J MBeierle, H A VKistemaker, W AVelema, B LFeringa. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chemical Reviews, 2013, 113(8): 6114–6178
https://doi.org/10.1021/cr300179f pmid: 23614556
14 S ZPu, Q Sun, C BFan, R JWang, GLiu. Recent advances in diarylethene-based multi-responsive molecular switches. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(15): 3075–3093
https://doi.org/10.1039/C6TC00110F
15 W BLi, Q X Yao, L Sun, X DYang, R YGuo, JZhang. A viologen-based coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm, 2017, 19(4): 722–726
https://doi.org/10.1039/C6CE02496C
16 XCai, L Zhu, SBao, QLuo. Photochromic dithienylethene-branched triptycene hybrids. Dyes and Pigments, 2015, 121: 227–234
https://doi.org/10.1016/j.dyepig.2015.05.023
17 SChen, Y Yang, YWu, HTian, W Zhu. Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform. Journal of Materials Chemistry, 2012, 22(12): 5486–5494
https://doi.org/10.1039/c2jm14973g
18 JAndréasson, UPischel. Molecules with a sense of logic: a progress report. Chemical Society Reviews, 2015, 44(5): 1053–1069
https://doi.org/10.1039/C4CS00342J pmid: 25520053
19 BRoubinet, M L Bossi, P Alt, MLeutenegger, HShojaei, SSchnorrenberg, SNizamov, MIrie, V N Belov, S W Hell. Carboxylated photoswitchable diarylethenes for biolabeling and super-resolution RESOLFT microscopy. Angewandte Chemie, 2016, 55(49): 15429–15433
https://doi.org/10.1002/anie.201607940 pmid: 27767250
20 BRoubinet, M Weber, HShojaei, MBates, M LBossi, V NBelov, MIrie, S W Hell. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution. Journal of the American Chemical Society, 2017, 139(19): 6611–6620
https://doi.org/10.1021/jacs.7b00274 pmid: 28437075
21 LGiordano, T M Jovin, M Irie, E AJares-Erijman. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). Journal of the American Chemical Society, 2002, 124(25): 7481–7489
https://doi.org/10.1021/ja016969k pmid: 12071757
22 MIrie, T Fukaminato, TSasaki, NTamai, TKawai. Organic chemistry: a digital fluorescent molecular photoswitch. Nature, 2002, 420(6917): 759–760
https://doi.org/10.1038/420759a pmid: 12490936
23 CYun, J You, JKim, JHuh, E Kim. Photochromic fluorescence switching from diarylethenes and its applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2009, 10(3): 111–129
https://doi.org/10.1016/j.jphotochemrev.2009.05.002
24 CLi, H Yan, G FZhang, W LGong, TChen, R Hu, M PAldred, M QZhu. Photocontrolled intramolecular charge/energy transfer and fluorescence switching of tetraphenylethene-dithienylethene-perylenemonoimide triad with donor-bridge-acceptor structure. Chemistry, an Asian Journal, 2014, 9(1): 104–109
https://doi.org/10.1002/asia.201301071 pmid: 24347069
25 CLi, H Yan, L XZhao, G FZhang, ZHu, Z L Huang, M Q Zhu. A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nature Communications, 2014, 5(1): 5709
https://doi.org/10.1038/ncomms6709 pmid: 25502396
26 MSharnoff. Photophysics of aromatic molecules: by John B. Birks (Wiley-Interscience, London, 1970) 704 pages, price 210 shillings. Journal of Luminescence, 1971, 4(1): 69–71
https://doi.org/10.1016/0022-2313(71)90011-1
27 JLuo, Z Xie, J W YLam, LCheng, HChen, C Qiu, H SKwok, XZhan, Y Liu, DZhu, B ZTang. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, (18): 1740–1741
https://doi.org/10.1039/b105159h pmid: 12240292
28 JMei, Y Hong, J W YLam, AQin, Y Tang, B ZTang. Aggregation-induced emission: the whole is more brilliant than the parts. Advanced Materials, 2014, 26(31): 5429–5479
https://doi.org/10.1002/adma.201401356 pmid: 24975272
29 M PAldred, C Li, G FZhang, W LGong, A D QLi, YDai, D Ma, M QZhu. Fluorescence quenching and enhancement of vitrifiable oligofluorenes end-capped with tetraphenylethene. Journal of Materials Chemistry, 2012, 22(15): 7515–7528
https://doi.org/10.1039/c2jm30261f
30 ZHuang, X Zhang, XZhang, CFu, K Wang, JYuan, LTao, Y Wei. Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6(4): 607–612
https://doi.org/10.1039/C4PY01421A
31 B ZTang, X Zhan, GYu, P PSze Lee, YLiu, D Zhu. Efficient blue emission from siloles. Journal of Materials Chemistry, 2001, 11(12): 2974–2978
https://doi.org/10.1039/b102221k
32 AShao, Y Xie, SZhu, ZGuo, S Zhu, JGuo, PShi, T D James, H Tian, W HZhu. Far-red and near-IR AIE-active fluorescent organic nanoprobes with enhanced tumor-targeting efficacy: shape-specific effects. Angewandte Chemie, 2015, 54(25): 7275–7280
https://doi.org/10.1002/anie.201501478 pmid: 25950152
33 X QZhang, Z G Chi, B J Xu, H Y Li, W Zhou, X FLi, YZhang, S WLiu, J RXu. Comparison of responsive behaviors of two cinnamic acid derivatives containing carbazolyl triphenylethylene. Journal of Fluorescence, 2011, 21(1): 133–140
https://doi.org/10.1007/s10895-010-0697-y pmid: 20593226
34 JMei, N L C Leung, R T K Kwok, J W Y Lam, B Z Tang. Aggregation-induced emission: together we shine, united we soar! Chemical Reviews, 2015, 115(21): 11718–11940
https://doi.org/10.1021/acs.chemrev.5b00263 pmid: 26492387
35 S JLim, B K An, S D Jung, M A Chung, S Y Park. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angewandte Chemie, 2004, 43(46): 6346–6350
https://doi.org/10.1002/anie.200461172 pmid: 15558667
36 CLi, W L Gong, Z Hu, M PAldred, G FZhang, TChen, Z L Huang, M Q Zhu. Photoswitchable aggregation-induced emission of a dithienylethene-tetraphenylethene conjugate for optical memory and super-resolution imaging. RSC Advances, 2013, 3(23): 8967–8972
https://doi.org/10.1039/c3ra40674a
37 XZhang, X Zhang, BYang, JHui, M Liu, ZChi, SLiu, J Xu, YWei. Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(5): 816–820
https://doi.org/10.1039/C3TC31852D
38 HDong, M Luo, SWang, XMa. Synthesis and properties of tetraphenylethylene derivatived diarylethene with photochromism and aggregation-induced emission. Dyes and Pigments, 2017, 139: 118–128
https://doi.org/10.1016/j.dyepig.2016.11.054
39 C EBunker, N B Hamilton, Y P Sun. Quantitative application of principal component analysis and self-modeling spectral resolution to product analysis of tetraphenylethylene photochemical reactions. Analytical Chemistry, 1993, 65(23): 3460–3465
https://doi.org/10.1021/ac00071a021
40 M PAldred, C Li, M QZhu. Optical properties and photo-oxidation of tetraphenylethene-based fluorophores. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(50): 16037–16045
https://doi.org/10.1002/chem.201202715 pmid: 23081687
41 W LGong, B Wang, M PAldred, CLi, G F Zhang, T Chen, LWang, M QZhu. Tetraphenylethene-decorated carbazoles: synthesis, aggregation-induced emission, photo-oxidation and electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(34): 7001–7012
https://doi.org/10.1039/C4TC01019A
42 B PJiang, D S Guo, Y C Liu, K P Wang, Y Liu. Photomodulated fluorescence of supramolecular assemblies of sulfonatocalixarenes and tetraphenylethene. ACS Nano, 2014, 8(2): 1609–1618
https://doi.org/10.1021/nn405923b pmid: 24467338
43 DOu, T Yu, ZYang, TLuan, Z Mao, YZhang, SLiu, J Xu, ZChi, M RBryce. Combined aggregation induced emission (AIE), photochromism and photoresponsive wettability in simple dichloro-substituted triphenylethylene derivatives. Chemical Science (Cambridge), 2016, 7(8): 5302–5306
https://doi.org/10.1039/C6SC01205A
44 LZhu, R Wang, LTan, XLiang, CZhong, FWu. Aggregation-induced emission and aggregation-promoted photo-oxidation in thiophene-substituted tetraphenylethylene derivative. Chemistry, an Asian Journal, 2016, 11(20): 2932–2937
https://doi.org/10.1002/asia.201601003 pmid: 27541703
45 L IBelen’kii, G PGromova, A VKolotaev, B VNabatov, M MKrayushkin. Synthesis and photochromic properties of tetrakis(3,5-dimethyl-2-thienyl)- and tetrakis(2,5-dimethyl-3-thienyl)ethylenes. Russian Chemical Bulletin, 2005, 54(5): 1208–1213
https://doi.org/10.1007/s11172-005-0382-5
46 QLuo, F Cao, CXiong, QDou, D H Qu. Hybrid cis/trans tetra-arylethenes with switchable aggregation-induced emission (AIE) and reversible photochromism in the solution, PMMA film, solid powder, and single crystal. Journal of Organic Chemistry, 2017, 82(20): 10960–10967
https://doi.org/10.1021/acs.joc.7b01877 pmid: 28937763
47 LMa, S Wang, CLi, DCao, T Li, XMa. Photo-controlled fluorescence on/off switching of a pseudo[3]rotaxane between an AIE-active pillar[5]arene host and a photochromic bithienylethene guest. Chemical Communications, 2018, 54(19): 2405–2408
https://doi.org/10.1039/C8CC00213D pmid: 29457184
48 SChen, W Li, XLi, W HZhu. Aggregation-controlled photochromism based on a dithienylethene derivative with aggregation-induced emission. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(10): 2717–2722
https://doi.org/10.1039/C7TC00023E
49 LChen, J Zhang, QWang, LZou. Photo-controllable and aggregation-induced emission based on photochromic bithienylethene. Dyes and Pigments, 2015, 123: 112–115
https://doi.org/10.1016/j.dyepig.2015.07.031
50 JSu, T Fukaminato, J PPlacial, TOnodera, RSuzuki, HOikawa, ABrosseau, FBrisset, RPansu, KNakatani, RMétivier. Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles. Angewandte Chemie, 2016, 55(11): 3662–3666
https://doi.org/10.1002/anie.201510600 pmid: 26821998
51 GLiu, Y M Zhang, L Zhang, CWang, YLiu. Controlled photoerasable fluorescent behaviors with dithienylethene-based molecular turnstile. ACS Applied Materials & Interfaces, 2018, 10(15): 12135–12140
https://doi.org/10.1021/acsami.7b12822 pmid: 29048153
52 GLiu, Y M Zhang, X Xu, LZhang, YLiu. Optically switchable luminescent hydrogel by synergistically intercalating photochromic molecular rotor into inorganic clay. Advanced Optical Materials., 2017, 5(11): 1700149
https://doi.org/10.1002/adom.201700149
53 J WChung, S J Yoon, S J Lim, B K An, S Y Park. Dual-mode switching in highly fluorescent organogels: binary logic gates with optical/thermal inputs. Angewandte Chemie, 2009, 48(38): 7030–7034
https://doi.org/10.1002/anie.200902777 pmid: 19691077
54 GSinawang, J Wang, BWu, XWang, Y He. Photoswitchable aggregation-induced emission polymer containing dithienylethene and tetraphenylethene moieties. RSC Advances, 2016, 6(15): 12647–12651
https://doi.org/10.1039/C5RA27014F
55 S JLim, B K An, S Y Park. Bistable photoswitching in the film of fluorescent photochromic polymer: enhanced fluorescence emission and its high contrast switching. Macromolecules, 2005, 38(15): 6236–6239
https://doi.org/10.1021/ma0504163
56 RSingh, H Y Wu, A Kumar Dwivedi, ASingh, C MLin, PRaghunath, M CLin, T KWu, K HWei, H CLin. Monomeric and aggregation emissions of tetraphenylethene in a photo-switchable polymer controlled by cyclization of diarylethene and solvent conditions. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(38): 9952–9962
https://doi.org/10.1039/C7TC03071A
57 G MTsivgoulis, J MLehn. Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angewandte Chemie, 1995, 34(10): 1119–1122
https://doi.org/10.1002/anie.199511191
58 TFukaminato, T Doi, NTamaoki, KOkuno, YIshibashi, HMiyasaka, MIrie. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. Journal of the American Chemical Society, 2011, 133(13): 4984–4990
https://doi.org/10.1021/ja110686t pmid: 21391599
59 MBerberich, F Wurthner. Terrylene bisimide-diarylethene photochromic switch. Chemical Science (Cambridge), 2012, 3(9): 2771–2777
https://doi.org/10.1039/c2sc20554h
60 MBerberich, A M Krause, M Orlandi, FScandola, FWürthner. Toward fluorescent memories with nondestructive readout: photoswitching of fluorescence by intramolecular electron transfer in a diaryl ethene-perylene bisimide photochromic system. Angewandte Chemie, 2008, 47(35): 6616–6619
https://doi.org/10.1002/anie.200802007 pmid: 18683179
61 TFukaminato, T Doi, NTamaoki, KOkuno, YIshibashi, HMiyasaka, MIrie. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. Journal of the American Chemical Society, 2011, 133(13): 4984–4990
https://doi.org/10.1021/ja110686t pmid: 21391599
62 MFernández-Suárez, A YTing. Fluorescent probes for super-resolution imaging in living cells. Nature Reviews, Molecular Cell Biology, 2008, 9(12): 929–943
https://doi.org/10.1038/nrm2531 pmid: 19002208
63 EBetzig, G H Patterson, R Sougrat, O WLindwasser, SOlenych, J SBonifacino, M WDavidson, JLippincott-Schwartz, H FHess. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793): 1642–1645
https://doi.org/10.1126/science.1127344 pmid: 16902090
64 M JRust, M Bates, XZhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006, 3(10): 793–796
https://doi.org/10.1038/nmeth929 pmid: 16896339
65 JYan, L X Zhao, C Li, ZHu, G FZhang, Z QChen, TChen, Z L Huang, J Zhu, M QZhu. Optical nanoimaging for block copolymer self-assembly. Journal of the American Chemical Society, 2015, 137(7): 2436–2439
https://doi.org/10.1021/ja512189a pmid: 25668069
66 BHuang, W Wang, MBates, XZhuang. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813
https://doi.org/10.1126/science.1153529 pmid: 18174397
67 MHeilemann, P Dedecker, JHofkens, MSauer. Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser & Photonics Reviews, 2009, 3(1–2): 180–202
https://doi.org/10.1002/lpor.200810043
68 M QZhu, G F Zhang, C Li, Y JLi, M PAldred, A D QLi. Photoswitchable nanofluorophores for innovative biomaging. Journal of Innovative Optical Health Sciences, 2011, 04(04): 395–408
https://doi.org/10.1142/S1793545811001423
[1] Jiayun XIANG,Han NIE,Yibin JIANG,Jian ZHOU,Hoi Sing KWOK,Zujin ZHAO,Ben Zhong TANG. Blue fluorophores comprised of tetraphenylethene and imidazole: aggregation-induced emission and electroluminescence[J]. Front. Optoelectron., 2015, 8(3): 274-281.
[2] Xiaodi TAN,Xiao LIN,An’an WU,Jingliang ZANG. High density collinear holographic data storage system[J]. Front. Optoelectron., 2014, 7(4): 443-449.
[3] Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
[4] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed