Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 413-418    https://doi.org/10.1007/s12200-018-0863-4
RESEARCH ARTICLE
A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory
Feidi XIANG, Kejia WANG(), Zhengang YANG, Jinsong LIU, Shenglie WANG
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(214 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Previous theoretical researches on the two-dimensional terahertz spectroscopy (2DTS), which are conducted via inefficiently time-consuming numerical simulation, deal with only single-mode system. To overcome the limitations, we derive a classical-theory-based analytical solution which is applicable to multi-modes system. Three typical weak sources of nonlinearities are introduced. The findings suggest that the analytical results correspond well with those obtained by the traditional numerical simulation. Thus the study provides a more efficient and practical method to directly calculate 2DTS, and, in a broader sense, sheds new light on the theory of 2DTS.

Keywords two-dimensional spectroscopy      terahertz      classical method     
Corresponding Author(s): Kejia WANG   
Just Accepted Date: 20 November 2018   Online First Date: 14 December 2018    Issue Date: 21 December 2018
 Cite this article:   
Feidi XIANG,Kejia WANG,Zhengang YANG, et al. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Front. Optoelectron., 2018, 11(4): 413-418.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0863-4
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/413
Fig.1  Timing schematic diagram of 2DTS
Fig.2  THz pulse used in calculation shown in time- (a) and frequency- (b) domain
Fig.3  Normalized 2D diagrams corresponding to (a) AH, (b) NC, and (c) ND obtained by analytical calculation, and those corresponding to (d) AH, (e) NC, and (f) ND obtained by numerical simulation. Only the first quartile is presented to display more details
1 THattori. Classical theory of two-dimensional time-domain terahertz spectroscopy. Journal of Chemical Physics, 2010, 133(20): 204503
https://doi.org/10.1063/1.3507256 pmid: 21133442
2 VCervetto, J Helbing, JBredenbeck, PHamm. Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: an experimental and theoretical comparison. Journal of Chemical Physics, 2004, 121(12): 5935–5942
https://doi.org/10.1063/1.1778163 pmid: 15367022
3 KOkumura, Y Tanimura. Two-dimensional THz spectroscopy of liquids: non-linear vibrational response to a series of THz laser pulses. Chemical Physics Letters, 1998, 295(4): 298–304
https://doi.org/10.1016/S0009-2614(98)00968-3
4 MWoerner, W Kuehn, PBowlan, KReimann, TElsaesser. Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New Journal of Physics, 2013, 15(2): 025039
https://doi.org/10.1088/1367-2630/15/2/025039
5 M TZanni, S Gnanakaran, JStenger, R MHochstrasser. Heterodyned two-dimensional infrared spectroscopy of solvent-dependent conformations of acetylproline-NH2. Journal of Physical Chemistry B, 2001, 105(28): 6520–6535
https://doi.org/10.1021/jp0100093
6 SWoutersen, P Hamm. Nonlinear two-dimensional vibrational spectroscopy of peptides. Journal of Physics Condensed Matter, 2002, 14(39): R1035–R1062
https://doi.org/10.1088/0953-8984/14/39/202
7 SWoutersen, P Hamm. Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy. Journal of Physical Chemistry B, 2000, 104(47): 11316–11320
https://doi.org/10.1021/jp001546a
8 PHamm, M Lim, W FDeGrado, R MHochstrasser. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 2036–2041
https://doi.org/10.1073/pnas.96.5.2036 pmid: 10051590
9 JBredenbeck, J Helbing, RBehrendt, CRenner, LMoroder, JWachtveitl, PHamm. Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide. Journal of Physical Chemistry B, 2003, 107(33): 8654–8660
https://doi.org/10.1021/jp034552q
10 MJewariya, M Nagai, KTanaka. Enhancement of terahertz wave generation by cascaded c(2) processes in LiNbO3. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(9): A101–A106
https://doi.org/10.1364/JOSAB.26.00A101
11 JHebling, G Almási, IKozma, JKuhl. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
https://doi.org/10.1364/OE.10.001161 pmid: 19451975
12 K LYeh, M C Hoffmann, J Hebling, K ANelson. Generation of 10 mJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121
https://doi.org/10.1063/1.2734374
13 TElsaesser, K Reimann, MWoerner. Focus: phase-resolved nonlinear terahertz spectroscopy--from charge dynamics in solids to molecular excitations in liquids. Journal of Chemical Physics, 2015, 142(21): 212301
https://doi.org/10.1063/1.4916522 pmid: 26049419
14 WKuehn, K Reimann, MWoerner, TElsaesser. Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain. Journal of Chemical Physics, 2009, 130(16): 164503
https://doi.org/10.1063/1.3120766 pmid: 19405590
15 APashkin, A Sell, TKampfrath, RHuber. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003
https://doi.org/10.1088/1367-2630/15/6/065003
16 JHu, J Liu, HLi, KWang, Z Yang, SWang. Influence of the amplitude ratio between two terahertz pulses on two-dimensional spectroscopy. Chinese Science Bulletin, 2014, 59(2): 138–146
https://doi.org/10.1007/s11434-013-0042-3
17 HLi, J Liu, KWang, ZYang. A classical iterative theory based on the Langevin equation for two-dimensional nonlinear terahertz spectroscopy. Journal of Modern Optics, 2013, 60(10): 773–780
https://doi.org/10.1080/09500340.2013.813088
18 HLi, J Liu, KWang, ZYang, Z Du. Influence of terahertz pulse width on two-dimensional terahertz spectroscopy. Journal of Modern Optics, 2012, 59(10): 923–929
https://doi.org/10.1080/09500340.2012.679708
19 KOkumura, Y Tanimura. Sensitivity of two-dimensional fifth-order Raman response to the mechanism of vibrational mode-mode coupling in liquid molecules. Chemical Physics Letters, 1997, 278(1-3): 175–183
https://doi.org/10.1016/S0009-2614(97)00942-1
[1] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[2] Kang LIU, Pingjie HUANG, Xi-Cheng ZHANG. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiation-enhanced-emission-of-fluorescence: a review[J]. Front. Optoelectron., 2019, 12(2): 117-147.
[3] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[4] Wenshu MA, Qi LI, Jianye LU, Liyu SUN. De-noising research on terahertz holographic reconstructed image based on weighted nuclear norm minimization method[J]. Front. Optoelectron., 2018, 11(3): 267-274.
[5] Chenghong WU, Xinyang MIAO, Kun ZHAO. Identifying PM2.5 samples collected in different environment by using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2018, 11(3): 256-260.
[6] Fabrizio BUCCHERI, Pingjie HUANG, Xi-Cheng ZHANG. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas[J]. Front. Optoelectron., 2018, 11(3): 209-244.
[7] Weichong TANG, Zili ZHANG, Ke XIAO, Changchun ZHAO, Zhiyuan ZHENG. Terahertz frequency characterization of anisotropic structure of tourmaline[J]. Front. Optoelectron., 2017, 10(4): 409-413.
[8] Chen JIANG, Honglei ZHAN, Kun ZHAO, Cheng FU. Characterization of the cooling process of solid n-alkanes via terahertz spectroscopy[J]. Front. Optoelectron., 2017, 10(2): 132-137.
[9] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[10] Mikhail ESAULKOV,Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV,Alexander SHKURINOV. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
[11] Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 2015, 8(1): 44-56.
[12] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[13] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[14] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[15] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed